Статья
2018

Electrochemical Properties of Tetrasubstituted Cobalt Phthalocyanines with Fragments of Benzoic Acid


N. M. Berezina N. M. Berezina , M. I. Bazanov M. I. Bazanov , V. E. Maizlish V. E. Maizlish
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518130074
Abstract / Full Text

The method of cyclic voltammetry is used for the first time to study the electrochemical behavior of cobalt phthalocyanine derivatives with fragments of benzoic acid CoPc(4-O–C6H4COOH)4 and CoPc(4- S–C6H4COOH)4 in an aqueous alkaline solution. Comparative analysis is carried out of the electrochemical behavior and change in the electrocatalytic activity of metal phthalocyanines in the reaction of molecular oxygen electroreduction depending on the functional substitution in the macrocycle molecule. In the case of the CoPc(4-O–C6H4COOH)4 and CoPc(4-S–C6H4COOH)4 compounds, central metal ion oxidation (Co2+ → Co3+) and reduction (Co2+→ Co1+) processes and also two successive one–electron stages of phthalocyanine ligand electroreduction are registered. It is shown that the studied cobalt phthalocyanine derivatives manifest electrocatalytic activity in the process of molecular oxygen electroreduction.

Author information
  • Ivanovo State University of Chemistry and Technology, Research Institute of Macroheterocyclic Compounds, Ivanovo, 153000, Russia

    N. M. Berezina, M. I. Bazanov & V. E. Maizlish

References
  1. Phthalocyanines: Properties and Applications, Leznoff, C.C. and Lever, A.B.P., Eds., New York: VCH Publishers, 1989, vol. 1; 1993, vol. 2; 1993, vol. 3; 1996, vol. 4.
  2. Berezin, B.D., Koordinatsionnye soedineniya porfirinov and ftalotsianina (Coordination Compounds of Porphyrins and Phthalocyanine), Moscow: Nauka, 1978 [in Russian].
  3. Booth, G., Phthalocyanines, Chemistry of Synthetic Dyes, Venkataraman, K., Ed., Academic Press, 1971, vol. 4, p. 241.
  4. Shaposhnikov, G.P., Kulinich, V.P., and Maizlish, V.E., Modifitsirovannye ftalotsianini i ih strukturnye analogi (Modified Phthalocyanines and Their Structural Analogs), Koifman, O.I., Ed., Moscow: Krasand, 2012 [in Russian].
  5. Wöhrle, D., Schnurpteil, G., Makarov, S.G., Kazarin, A., and Suvorova, O.N., Practical applications of phthalocyanines–from dyes and pigments to materials for optical, electronic and photo-electronic devices, Macrohererocycles, 2012, vol. 5, no. 3, p. 191.
  6. Filimonov, D.A., Turchaninova, I.V., Bazanov, M.I., and Maizlish, V.E., Study of electrochemical and electrocatalytical properties of series of derivatives of copper phthalocyanine, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2011, vol. 54, p. 105.
  7. Osmieri, L., Monteverde Videla, A.H.A., Ocon, P., and Specchia, S., Kinetics of Oxygen Electroreduction on Me–N–C (Me = Fe, Co, Cu) Catalysts in Acidic Medium: Insights on the Effect of the Transition Metal, J. Phys. Chem. C, 2017, vol. 121, no. 33, p. 17796.
  8. Bazanov, M.I., Martynov, N.P., Maizlish, V.E., and Smirnov, R.P., Study of Redox Behavior of Cobalt Phthalocyanine Derivatives on the Electrode Surface in Aqueous Alkaline Solution, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1998, vol. 41, no. 1, p. 78.
  9. Bazanov, M.I., Shishkina, O.V., Maizlish, V.E., Smirnov, R.P., Petrov, A.V., Shaposhnikov, G.P., and Gzheydzyak, A., Electrochemical studies of cobaltcontaining phthalocyanine compounds, Russ. J. Electrochem., 1998, vol. 34, no. 8, p. 818.
  10. Bazanov, M.I., Balakireva, O.V., Balakirev, A.E., Kurach, M.V., Maizlish, V.E., and Shaposhnikov, G.P., Voltammetry of some cobalt-containing octasubstituted phthalocyanines, Russ. J. Electrochem., 2002, vol. 38, no. 9, p. 1000.
  11. Bazanov, M.I. and Petrov, A.V., Uspehi chimii porfirinov (Advances in Porphyrin Chemistry), vol. 5, Golubchikov, O.A., Ed., St. Petersburg: NII, St. Petersburg State University, 2007, p. 275.
  12. Maizlish, V.E., Snegirev, F.P., Shaposhnikov, G.P., Kolesnikova, E.E., and Smirnov, R.P. Synthesis and Physico-Chemical Properties of Carboxy–Substituted Metal Pthalocyanines, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1990, vol. 33, no. 1, p. 70.
  13. Kudric, E.V., Smirnov, A.I., Maizlish, V.E., Tararykina, T.V., Shaposhnikov, G.P., and Usoltseva, N.V., Synthesis and Liquid Crystalline Properties of Copper 2,9(10),16(17),23(24)-and 1,8(11),15(18),22(25)-Tetra(4-Carboxyphenoxy)Phthalocyanines, and Their Esters, Izv. AN Ser. Khimich., 2006, vol. 6, no. 1, p. 991.
  14. Mayranovskiy, V.G. Electrochemistry of Porphyrins, in Porfiriny: spektroskopiya, elektrokhimiya, primeneniye (Porphyrins: Spectroscopy, Eletcrochemistry, Application), Yenikolopyan, N.S., Ed., Moscow: Nauka, 1987, p. 127.
  15. Kadish, K.M., Caemelbecke, E.V., Royal, G., Electrochemistry of Metalloporpyrins in Nonaqueous Media, in The Porphyrin Handbook, Kadish, K.M., Eds., SanDiego: Academic Press, 2000, vol. 8, Chap. 55, pp. 1–114.
  16. Tarasevich, M.R., Radyushkina, K.A., and Bogdanovskaya, V.A., Elektrokhimiya porfirinov (Electrochemistry of Porphyrins), Moscow: Nauka, 1991.
  17. Tesakova, M.V., Noskov, A.V., Bazanov, M.I., Berezina, N.M., and Parfenyuk, V.I., Kinetic parameters of the electroreduction of oxygen on a graphitized carbon electrode activated by tetrakis(4-methoxyphenyl)porphyrin and its cobalt complexes, Russ. J. Phys. Chem. A, 2012, vol. 86, no. 1, p. 9.
  18. Bazanov, M.I., Filimonov, D.A., Volkov, A.V., and Koyfman, O.I., Makrogeretsiklicheskiye soyedineniya: Elektrokhimiya, elektrokataliz, termokhimiya (Macroheterocyclic Compounds: Electrochemistry, Electrocatalysis, Thermochemistry), Moscow: Lenand, 2016.
  19. Do, N.M., Berezina, N.M., Bazanov, M.I., Gyseinov, S.S., Berezin, M.B., and Koifman, O.I. Electrochemical behavior of a number of bispyridyl-substituted porphyrins and their electrocatalytic activity in molecular oxygen reduction reaction, J. Porphyrins Phthalocyanines, 2016, vol. 20, no. 5, p. 615.
  20. Bazanov, M.I., Petrov, A.V., Zhutaeva, G.V., Turchaninova, I.V., Andrievski, G., and Evseev, A.A., Electrocatalytic activity of macroheterocyclic complexes in the molecular oxygen electroreduction: A cyclic voltammetry estimate, Russ. J. Electrochem., 2004, vol. 40, no. 11, p. 1198.
  21. Koca, A., Dincer, H.A., Kocak, M.B., and Gui, A., Electrochemical characterization of Co(II) and Pd(II) phthalocyanines carrying diethoxymalonyl and carboxymethyl substituents, Russ. J. Electrochemistry, 2006, vol. 42, no. 1, p. 31.
  22. Laviron, E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem., 1979, vol. 101, p. 19.
  23. Davis, R.E., Horvath, G.L., and Tobias, C.W., The solubility and diffusion coefficient of oxygen in potassium hydroxide solutions, Electrochim. Acta, 1967, vol. 12, p. 287.
  24. Beck, F. The redox mechanism of the chelate-catalysed oxygen cathode, J. Appl. Electrochem., 1977, vol. 7, p. 239.