Electrochemical Characteristics of Fuel Cells with CaZr0.9Y0.1O3 – δ Electrolyte Film Supported by Nickel–Cermet Anode

V. M. Kuimov V. M. Kuimov , A. Sh. Khaliullina A. Sh. Khaliullina , A. A. Pankratov A. A. Pankratov , B. D. Antonov B. D. Antonov , L. A. Dunyushkina L. A. Dunyushkina
Российский электрохимический журнал
Abstract / Full Text

Electrochemical characteristics of fuel cells containing CaZr0.9Y0.1O3 – δ film supported by Ni–CaZr0.95Sc0.05O3 – δ anode are studied. It is shown that the diffusion of nickel from the electrode-support favors the increase in electronic conductivity of the electrolyte. It is found that to provide sufficiently high transport numbers of ions, the thickness of the CZY electrolyte film should not be smaller than 4 µm. The polarization losses on the anode are concluded to be the main reason for the lower power of fuel cells with thin-film electrolyte.

Author information
  • Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, 620137, Yekaterinburg, Russia

    V. M. Kuimov, A. Sh. Khaliullina, A. A. Pankratov, B. D. Antonov & L. A. Dunyushkina

  1. Korovin, N.V., Toplivnye elementy i elektrokhimicheskie ustanovki (Fuel Cells and Electrochemical Installations), Moscow: MEI, 2007.
  2. Korovin, N.V., Elektrokhimicheskaya energetika (Electrochemical Power Engineering), Moscow: Energoatomizdat, 1991.
  3. Korovin, N.V., Electrochemical power apparatus based on fuel cells, its state of the art and prospects, Teploenergetika, 1994, vol. 1, p. 22.
  4. Korovin, N.V., Electrochemical Power Engineering, Izv. Ross. Akad. Nauk, Energ., 1997, no. 4, p. 49.
  5. Jiang, S. and Yan, Y., Materials for High-Temperature Fuel Cells, Weinheim: Wiley-VCH, 2013.
  6. Gorelov, V.P., Balakireva, V.B., Kuzmin, A.V., and Plaksin, S.V., Electrical conductivity CaZr1 – xScxO3 – α (x = 0.01–0.20) in dry and humid air, Russ. J. Neorg. Mater., 2014, vol. 50, p. 495.
  7. Bao, J., Ohno, H., Kurita, N., Okuyama, Y., and Fukatsu, N., Proton conduction in Al-doped CaZrO3, Electrochim. Acta, 2011, vol. 56, p. 1062.
  8. Naoumidis, A., Ahmad-Khanlou, A., Samardzidja, Z., and Kolar, D., Chemical interaction and diffusion on interface cathode/electrolyte of SOFC, Fresenius’ J. Anal. Chem., 1999, vol. 365, p. 277.
  9. Yan, K., Kishimoto, H., Develos-Bagariano, K., Yamaji, K., Horita, T., and Yokokawa, H., Effects of sintering atmosphere on the interaction between doped yttrium chromite anode and yttria stabilized zirconia electrolyte, Solid State Ionics, 2017, vol. 307, p. 21.
  10. Kuimov, V.M., Khaliullina, A.Sh., Pankratov, A.A., Antonov, B.D., and Dunyushkina, L.A., Synthesis and conductivity of CaZr0.9Y0.1O3 – δ electrolyte films on supporting electrode, Russ. J. Electrochem., 2018, vol. 54, p. 170.
  11. Ranran, P., Yan, W., Lizhai, Y., and Zongqiang, M., Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thin film, Solid State Ionics, 2006, vol. 177, p. 389.
  12. Itagaki, Y., Yamamoto, Y., Aono, H., and Yahiro, H., Anode-supported SOFC with thin film of proton-conducting BaCe0.8Y0.2O3 – δ by electrophoretic deposition, J. Cer. Soc. Jpn., 2017, vol. 125, p. 528.
  13. Liu, M. and Hu, H., Properties of mixed-conducting electrolytes, J. Electrochem. Soc., 1996, vol. 143, p. L109.
  14. Agarwal, V. and Liu, M., Electrochemical properties of BaCe0.8Gd0.2O3   electrolyte  films  deposited  on Ni–BaCe0.8Gd0.2O3 substrates, J. Electrochem. Soc., 1997, vol. 144, p. 1035.
  15. Dunyushkina, L.A., Pankratov, A.A., Gorelov, V.P., Brouzgou, A., and Tsiakaras, P., Deposition and characterization of Y-doped CaZrO3 electrolyte film on a porous SrTi0.8Fe0.2O3 – δ substrate, Electrochim. Acta, 2016, vol. 202, p. 39.