Статья
2018

Comparative Study of Special Features of the Oxygen Reaction (Molecular Oxygen Ionization and Evolution) in Aqueous and Nonaqueous Electrolyte Solutions (a Review)


M. R. Tarasevich M. R. Tarasevich , O. V. Korchagin O. V. Korchagin , O. V. Tripachev O. V. Tripachev
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518010093
Abstract / Full Text

Studies of the oxygen reaction, including the oxygen ionization and evolution processes occurring at typical electrode materials in aqueous and nonaqueous electrolytes, are analyzed. A connection between the problematics of the oxygen electrode reaction in nonaqueous media and the developing of novel batteries, in the first place, Li–O2 batteries, is emphasized. Unlike aqueous solutions, the oxygen reduction in aprotic electrolytes was shown to occur without breaking of the O–O bond; it is accompanied by formation of poorly soluble product of two-electron reaction (Li2O2) in the pores of positive electrode. The effect of the solvent donor number and the anion composition on the oxygen reduction mechanism and the lithium peroxide deposit structure is described. A marked reduction of the Li2O2 oxidation overvoltage when passing from carbonaceous materials to platinum-containing catalysts in the positive electrode is elucidated; in the latter case, the effect of electrocatalyst type upon the Li2O2 formation reaction is somewhat reduced. The elucidation of the contribution of processes occurring at the free and lithium-peroxide-covered electrode surface during the oxygen reaction for wide variety of active materials is formulated as the main basic problem of the future research.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 119071, Russia

    M. R. Tarasevich, O. V. Korchagin & O. V. Tripachev

References
  1. Hoare, J.P., The Electrochemistry of Oxygen, NewYork: Interscience, 1968.
  2. Appleby, A.J., in Modern Aspects of Electrochemistry, vol. 9, Bockris, J.O’M. and Conway, B.E., Eds., NewYork: Plenum, 1974, p. 369–478.
  3. Sawyer, D.T., Oxygen Chemistry, New York: Oxford University Press, 1991.
  4. Tarasevich, M.R., Khrushcheva, E.I., and Filinovskii, V.Yu., Vrashchayushchiisya diskovyi elektrod s kol’tsom (Rotating Ring–Disk Electrode), Moscow: Nauka, 1987.
  5. Rotating Electrode Methods and Oxygen Reduction Electrocatalysts, Xing,W., Yin, G., and Zhang, J., Eds., Elsevier, 2014, p.306.
  6. Trasatti, S., in Electrochemical Hydrogen Technologies, Wendt, H., Ed., Amsterdam: Elsevier, 1990, p. 1–14.
  7. Fabbri, E., Habereder, A., Waltar, K., Kotz, R., and Schmidt, T.J., Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction, Catal. Sci. Technol., 2014, vol. 4, p. 3800.
  8. Trotochaud, L. and Boettcher, S.W., Precise oxygen evolution catalysts: status and opportunities, Scripta Material, 2014, vol. 74, p.25.
  9. McCrory, C.C.L., Jung, S., Peters, J.C., and Jaramillo, T.F., Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction, J. Am. Chem. Soc., 2013, vol. 135, p. 16977.
  10. Appleby, A.J., Electrocatalysis of aqueous dioxygen reduction, J. Electroanal. Chem., 1993, vol. 357, p.117.
  11. Yeager, E., Dioxygen electrocatalysis: mechanisms in relation to catalyst structure, J. Molecular Cat., 1986, vol. 38, p.5.
  12. Tarasevich, M.R., Sadkowski, A., and Yeager, E., in Comprehensive Treatise of Electrochemistry, Conway, B.E., Bockris, J.O.M., Yeager, E., Khan, S.U.M., and White, R.E., Eds., New York: Plenum, 1983, Chap. 6, p. 301–398.
  13. Adzic, R., in Electrocatalysis, Lipkowski, J. and Ross, P.N., Eds., New York: Wiley–VCH, 1998, p. 197–242.
  14. Damjanovic, A., in Electrochemistry in Transition, Murphy, O.J., Srinivasan, S., and Conway, B.E., Eds., New York: Plenum, 1992, p. 107–126.
  15. Paulus, U., Shmidt, T., Gasteiger, H., and Behm, R., Oxygen reduction on a high-surface area Pt/vulcan carbon catalyst: a thin-film rotating ring-disk electrode study, J. Electroanal. Chem., 2001, vol. 495, p.134.
  16. Tarasevich, M.R. and Khrushcheva, E.I., in: Kinetika slozhnykh elektrokhimicheskikh reaktsii (Kinetics of Complicated Electrochemical Reactions), Moscow: Nauka, 1981, p.104.
  17. Ramaswamy, N. and Mukerjee, S., Fundamental mechanistic understanding of electrocatalysis of oxygen reduction on pt and non-Pt surfaces: acid versus alkaline media, Adv. Phys. Chem., 2012, vol. 2012, p.17.
  18. Tarasevich, M.R. and Korchagin, O.V., Electrocatalysis and pH (a review), Russ. J. Electrochem., 2013, vol. 49, p.600.
  19. Gottesfeld, S., Fuel Cell Catalysis a Surface Science Approach, New York: Wiley, 2009.
  20. Nie, Y., Li, L., and Wei, Z., Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction, Chem. Soc. Rev., 2015, vol. 44, p. 2168.
  21. Zhang, S., Yuan, X.-Z., Cheng, Hin J.N., Wang, H., Friedrich, K.A., and Schulze, M., A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells, J. Power Sources, 2009, vol. 194, p.588.
  22. Borup, R., Meyers, J., Pivovar, B., Kim, Y.S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K., Zawodzinski, T., Boncella, J., McGrath, J.E., Inaba, M., Miyatake, K., Hori, M., Ota, K., Ogumi, Z., Miyata, S., Nishikata, A., Siroma, Z., Uchimoto, Y., Yasuda, K., Kimijima, K., and Iwashita, N., Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev., 2007, vol. 107, p. 3904.
  23. Rodgers, M.P., Bonville, L.J., Kunz, H.R., Slattery, D.K., and Fenton, J.M., Fuel cell perfluorinated sulfonic acid membrane degradation correlating accelerated stress testing and lifetime, Chem. Rev., 2012, vol. 112, p. 6075.
  24. Tarasevich, M.R. and Korchagin, O.V., Rapid diagnostics of characteristics and stability of fuel cells with proton-conducting electrolyte, Russ. J. Electrochem., 2014, vol. 50, p.737.
  25. Tarasevich, M.R. and Bogdanovskaya, V.A., Mechanism of corrosion of nanosized multicomponent cathodic catalysts and formation of core-shell structures, Al’Ternativnaya Energetika Ekologiya, 2009, vol. 12, p.24.
  26. Imanishi, N., Luntz, A.C., and Bruce, P.G., The Lithium-Air Battery: Fundamentals, New York: Springer, 2014.
  27. Li, Q., Cao, R., Cho, J., and Wu, G., Nanostructured carbon-based cathode catalysts for nonaqueous lithium-oxygen batteries, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 13568.
  28. Franco, A.A. and Xue, K.-H., Carbon-based electrodes for lithium air batteries: scientific and technological challenges from a modeling perspective, ECS J. Solid State Sci. Tech., 2013, vol. 2, no. 10, p. M3084.
  29. Balaish, M., Kraytsberg, A., and Ein-Eli, Y., A critical review on lithium-air battery electrolytes, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 2801.
  30. Xia, C., Black, R., Fernandes, R., Adams, B., and Nazar, L.F., The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries, Nat. Chem., 2015, vol. 7, p. 496.
  31. McCloskey, B.D., Burke, C.M., Nichols, J.E., and Renfrew, S.E., Mechanistic insights for the development of Li–O2 battery materials: addressing Li2O2 conductivity limitations and electrolyte and cathode instabilities, Chem. Commun., 2015, vol. 51, p. 12701.
  32. Hartmann, P., Bender, C.L., Vracar, M., Durr, A.K., Garsuch, A., Janek, J., and Adelhelm, Ph., A rechargeable room-temperature sodium superoxide (NaO2) battery, Nat. Materials, 2013, vol. 12, p.228.
  33. Ren, X. and Wu, Y., A low-overpotential potassiumoxygen battery based on potassium superoxide, J. Am. Chem. Soc., 2013, vol. 135, p. 2923.
  34. Liu, W., Sun, Q., Yang, Y., Xie, J.-Y., and Fu, Z.-W., An enhanced electrochemical performance of a sodium-air battery with graphene nanosheets as air electrode catalysts, Chem. Commun., 2013, vol. 49, p. 1951.
  35. Ha, S., Kim, J.-K., Choi, A., Kim, Y., and Lee, K.T., Sodium-metal halide and sodium-air batteries, ChemPhysChem, 2014, vol. 15, p. 1971.
  36. Kang, S.Y., Mo, Y., Ong, S.P., and Ceder, G., Nanoscale stabilization of sodium oxides: implications for Na–O2 batteries, Nano Lett., 2014, vol. 14, p. 1016.
  37. Liu, W.-M., Yin, W.-W., Ding, F., Sang, L., and Fu, Z.-W., NiCo2O4 nanosheets supported on Ni foam for rechargeable non-aqueous sodium-air batteries, Electrochem. Commun, 2014, vol. 45, p.87.
  38. Wu, Y. and Xiaodi, R., Potassium-oxygen batteries based on potassium superoxide. Pat. US, WO, no. 2014116814, 2014
  39. Jian, Z., Chen, Y., Li, F., Zhang, T., Liu, C., and Zhou, H., High capacity Na–O2 batteries with carbon nanotube paper as binder-free air cathode, J. Power Sources, 2014, vol. 251, p.466.
  40. Adelhelm, P., Hartmann, P., Bender, C.L., Busche, M., Eufinger, C., and Janek, J., From lithium to sodium: cell chemistry of room temperature sodium-air and sodium-sulfur batteries, Beilstein J. Nanotech., 2015, vol. 6, p. 1016.
  41. Maricle, D.L. and Hodgson, W.G., Reducion of oxygen to superoxide anion in aprotic solvents, Anal. Chem., 1965, vol. 37, p. 1562.
  42. Peover, M.E. and White, B.S., Electrolytic reduction of oxygen in aprotic solvents: the superoxide ion, Electrochim. Acta, 1966, vol. 11, p. 1061.
  43. Nekrasov, L.H., Dukhanova, L.A., Dubrovina, N.I., and Vykhodtseva, L.H., Study of cathodic oxygen reduction reaction in dimethylformamide solutions by using rotating ring–disk electrode, Elektrokhimiya, 1970, vol. 6, p.388.
  44. Jain, P.S. and Lal, S., Electrolytic reduction of oxygen at solid electrodes in aprotic solvents-the superoxide ion, Electrochim. Acta, 1982, vol. 27, p.759.
  45. Sawyer, D.T., Chiericato, G., Angelis, C.T., Nanni, E.J., and Tsuchiya, T., Effects of media and electrode materials on the electrochemical reduction of dioxygen, Anal. Chem., 1982, vol. 54, p. 1720.
  46. Radyushkina, K.A., Zonina, E.O., and Tarasevich, M.P., Oxygen electroreduction at pyrolytic graphite in acetonitrile solutions, Elektrokhimiya, 1984, vol. 20, p.977.
  47. Vasudevan, D. and Wendt, H., Electroreduction of oxygen in aprotonic media, J. Electroanal. Chem., 1995, vol. 392, p.69.
  48. Ogasawara, T., Debart, A., Holzapfel, M., Novak, P., and Bruce, P.G., Rechargeable Li2O2 electrode for lithium batteries, J. Am. Chem. Soc., 2006, vol. 128, p. 1390.
  49. AlNashef, I.M., Leonard, M.L., Kittle, M.C., Matthews, M.A., and Weidner, J.W., Electrochemical generation of superoxide in room temperature ionic liquids, Electrochem. Solid-State Lett., 2001, vol. 4, p.16.
  50. Lu, Y.-Ch., Gasteiger, H.A., and Shao-Horn, Y., Catalytic activity trends of oxygen reduction reaction for nonaqueous li-air batteries, J. Am. Chem. Soc., 2011, vol. 133, p. 19048.
  51. Krishna, G., Dathar, Ph., Shelton, W.A., and Xu, Y., Trends in the catalytic activity of transition metals for the oxygen reduction reaction by lithium, J. Phys. Chem. Lett., 2012, vol. 3, p.891.
  52. Tripachev, O.V., Maleeva, E.A., and Tarasevich, M.R., Oxygen electroreduction in propylene carbonate solutions, Russ. J. Electrochem., 2015, vol. 51 P, p. 103–111.
  53. Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., and Hendrickson, M., A elucidating the mechanism of oxygen reduction for lithium-air battery applications, J. Phys. Chem. C, 2009, vol. 113, p. 20127.
  54. Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., and Hendrickson, M.A., Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium–air battery, J. Phys. Chem. C, 2010, vol. 114, p. 9178.
  55. Johnson, L., Li, C., Liu, Z., Chen, Y., Freunberger, S.A., Ashok, P.C., Praveen, B.B., Dholakia, K., Tarascon, J.-M., and Bruce, P.G., The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries, Nat. Chem., 2014, vol. 6, p. 1091.
  56. Yao, K.P.C., Risch, M., Sayed, S.Y., Lee, Y.-L., Harding, J., Grimaud, A., Pour, N., Xu, Z., Zhou, J., Mansour, A., Barde, F., and Shao-Horn, Y., Solidstate activation of Li2O2 oxidation kinetics and implications for Li–O2 batteries, Energy Environ. Sci., 2015, vol. 8, p. 2417.
  57. Cui, Q., Zhang, Y., Ma, S., and Peng, Z., Li2O2 oxidation: the charging reaction in the aprotic Li–O2 batteries, Sci. Bull., 2015, vol. 60, p. 1227.
  58. Giordani, V., Freunberger, S.A., Bruce, P.G., Tarascon, J.-M., and Larcher, D., H2O2 decomposition reaction as selecting tool for catalysts in Li–O2 cells, Electrochem. Solid-State Lett., 2010, vol. 13, p. A180.
  59. Casas-Cabanas, M., Binotto, G., Larcher, D., Lecup, A., Giordani, V., and Tarascon, J.-M., Defect chemistry and catalytic activity of nanosized Co3O4, Chem. Mater., 2009, vol. 21, p. 1939.
  60. Tarasevich, M.R., Elektrokhimiya uglerodnykh materialov (Electrochemistry of Carbonaceous Materials), Moscow: Nauka, 1984.
  61. Dai, L., Xue, Y., Qu, L., Choi, H.-J., and Baek, J.-B., Metal-free catalysts for oxygen reduction reaction, Chem. Rev., 2015, vol. 115, p. 4823.
  62. Markovic, N.M., Schmidt, T.J., Stamenkovic, V., and Ross, P.N., Oxygen reduction reaction on pt and pt bimetallic surfaces: a selective review, Fuel Cells, 2001, vol. 1, p.105.
  63. Damjanovich, A., Genshaw, M., and Bockris, J., The mechanism of oxygen reduction at platinum in alkaline solutions with special reference to H2O2, J. Electrochem. Soc., 1967, vol. 114, p. 1107.
  64. Markovic, N.M., Gasteiger, H.A., and Ross, P.N., Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric acid solution: rotating ring-Pt(hkl) disk studies, J. Phys. Chem., 1995, vol. 99, p. 3411.
  65. Norskov, J.K., Rosseisi, J., Logadottic, A., Lidqvist, L., and Kitchin, J.R., Bligaard, T., and Jonsson, H., Origin of the overpotential for oxygen reduction at a fuelcell cathode, J. Phys.Chem. B, 2004, vol. 108, p. 17886.
  66. Eichler, A., Mittendorfer, F., and Hafner, J., Precursor-mediated adsorption of oxygen on the (111) surfaces of platinum-group metals, Phys. Rev. B, 2000, vol. 62, p. 4744.
  67. Sidik, R.A. and Anderson, A.B., Density functional theory study of O2 electroreduction when bonded to a Pt dual site, J. Electroanal.Chem., 2002, vol. 528, p.69.
  68. Anderson, A.B., Cai, Y., Sidik, R.A., and Kang, D.B., Advancements in the local reaction center electron transfer theory and the transition state structure in the first step of oxygen reduction over platinum, J. Electroanal. Chem., 2005, vol. 580, p.17.
  69. Seung-Hoon, J., Louie, S.G., and Cohen, M.L., Electronic properties of oxidized carbon nanotubes, Phys. Rev. Lett., 2000, vol. 85, p. 1710.
  70. Jaonen, F., Horanz, J., and Lefevre, M., Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction, Appl. Mat. Interface, 2009, vol. 1, p. 1623.
  71. Liu, G., Li, X., Ganesan, R., and Popov, B.N., Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for pem fuel cells, Electrochim. Acta, 2010, vol. 55, p. 2853.
  72. Blizanac, B.B., Ross, P.N., and Markovic, N.M., Oxygen electroreduction on Ag(111): the pH effect, Electrochim. Acta, 2007, vol. 52, p. 2264.
  73. Zhutaeva, G.V., Bogdanovskaya, V.A., Davydova, E.S., Kazanskii, L.P., and Tarasevich, M.R., Kinetics and mechanism of oxygen electroreduction on vulcan XC-72R carbon black modified by pyrolysis products of cobalt 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrine in a broad pH interval, J. Solid State Electrochem., 2014, vol. 18, p. 1319.
  74. Bockris, J.O’M. and Shamshul Huq, A.K.M., The mechanism of the electrolytic evolution of oxygen on platinum, Proc. Roy. Soc. London, Ser. A, 1956, vol. 237, p.277.
  75. Bockris, J.O’M. and Otagawa, T., The electrocatalysis of oxygen evolution on perovskites, J. Electrochem. Soc., 1984, vol. 131, p.290.
  76. Lyons, M.E.G. and Brandon, M.P., The oxygen evolution reaction on passive oxide covered transition metal electrodes in aqueous alkaline solution. Part 1–nickel, Int. J. Electrochem. Sci., 2008, vol. 3, p. 1386.
  77. Tarasevich, M.R. and Radyushkina, K.A., Study of parallel-sequential stages of oxygen and hydrogen peroxide reactions. II. N2O2 oxidation and reduction at platinum, Elektrokhimiya, 1970, vol. 6, p.376.
  78. Tarasevich, M.R., Zakharkin, G.I., and Smirnova, P.M., Study of oxygen and hydrogen peroxide reactions by using RDE. III. Hydrogen peroxide decomposition at platinum in the presence of different anions and cations, Elektrokhimiya, 1973, vol. 9, p.645.
  79. Tarasevich, M.R. and Radyushkina, K.A., Electrocatalysis at metal-porphirins, Usp. Khim., 1980, vol. 49, p. 1498.
  80. Trasatti, S., Markovic, N., Gasteiger, H., and Ross, P.N., Transition Metal Oxides: Versatile Materials for Electrocatalysis, J. Electrochem. Soc., 1997, vol. 144, p. 1591.
  81. Lu, Y.-C., Xu, Z., Gasteiger, H.A., Chen, S., Hamad-Schifferli, K., and Shao-Horn, Y., Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries, J. Am. Chem. Soc., 2010, vol. 132, p. 12170.
  82. McCloskey, B.D., Scheffler, R., Speidel, A., Bethune, D.S., Shelby, R.M., and Luntz, A.C., On the efficacy of electrocatalysis in nonaqueous Li–O2 batteries, J. Am. Chem. Soc., 2011, vol. 133, p. 18038.
  83. Harding, J.R., Lu, Y.-C., Tsukada, Y., and Shao-Horn, Y., Evidence of catalyzed oxidation of Li–O2 for rechargeable Li–air battery applications, Phys. Chem. Chem. Phys., 2012, vol. 14, p. 10540.
  84. Gittleson, F.S., Sekol, R.C., Doubek, G., Linardi, M., and Taylor, A.D., Catalyst and electrolyte synergy in Li–O2 batteries, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 3230.
  85. Lu, Y.-Ch., Gasteiger, H.A., and Shao-Horn, Y., Method development to evaluate the oxygen reduction activity of high-surface-area catalysts for Li–air batteries, Electrochem. Solid-State Lett., 2011, vol. 14, p.70.
  86. Li, Y.L., Wang, J.J., Li, X.F., Liu, J., Geng, D.S., Yang, J.L., Li, R.Y., and Sun, X.L., Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries, Electrochem. Commun., 2011, vol. 13, p. 668.
  87. Meini, St., Piana, M., Beyer, H., Schwammlein, J., and Gasteiger, H.A., Effect of carbon surface area on first discharge capacity of Li–O2 cathodes and cyclelife behavior in ether-based electrolytes, J. Electrochem. Soc., 2012, vol. 159, p. 2135.
  88. Tran, C., Yang, X.-Q., and Qu, D., Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity, J. Power Sources, 2010, vol. 195, p. 2057.
  89. Kichambare, P., Kumar, J., Rodrigues, S., and Kumar, B., Electrochemical performance of highly mesoporous nitrogen doped carbon cathode in lithium–oxygen batteries, J. Power Sources, 2011, vol. 196, p. 3310.
  90. Beyer, H., Meini, S., Tsiouvaras, N., Piana, M., and Gasteiger, H.A., Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li–air batteries, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 11025.
  91. Kang, J., Li, O.L., and Saito, N., Hierarchical mesomacro structure porous carbon black as electrode materials in Li–air battery, J. Power Sources, 2014, vol. 261, p.156.
  92. Park, H.W., Lee, D.U., Nazar, L.F., and Chen, Z., Oxygen reduction reaction using MnO2 nanotubes/ nitrogen-doped exfoliated graphene hybrid catalyst for Li–O2 battery applications, J. Electrochem. Soc., 2013, vol. 160, p.344.
  93. Kavakli, C., Meini, S., Harzer, G., Tsiouvaras, N., Piana, M., Siebel, A., Garsuch, A., Gasteiger, H.A., and Herranz, J., Nanosized carbon-supported manganese oxide phases as lithium-oxygen battery cathode catalysts, Chem. Cat. Chem., 2013, vol. 5, p. 3358.
  94. Zhao, G., Xu, Zh., and Sun, K., Hierarchical porous Co3O4 films as cathode catalysts of rechargeable Li–O2 batteries, J. Mater. Chem. A, 2013, vol. 1, p. 12862.
  95. Du, Zh., Yang, P., Wang, L., Lu, Y., Goodenough, J.B., Zhang, J., and Zhang, D., Electrocatalytic performances of LaNi1-xMgxO3 perovskite oxides as bi-functional catalysts for lithium air batteries, J. Power Sources, 2014, vol. 265, p.91.
  96. Kundu, D., Black, R., Berg, E.J., and Nazar, L.F., A highly active nanostructured metallic oxide cathode for aprotic Li–O2 batteries, Energy Environ. Sci., 2015, vol. 8, p. 1292.
  97. Shang, C., Dong, S., Hu, P., Guan, J., Xiao, D., Chen, X., Zhang, L., Gu, L., Cui, G., and Chen, L., Compatible interface design of CoO-based Li–O2 battery cathodes with long-cycling stability, Sci. Rep., 2015, vol. 5, p. 8335.
  98. Aurbach, D., Daroux, M., Faguy, P., and Yeager, E., The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts, J. Electroanal. Chem., 1991, vol. 297, p.225.
  99. Yu, Q. and Ye, S., In-situ study of oxygen reduction in DMSO solution: a fundamental study for development of lithium–oxygen battery, J. Phys. Chem. C, 2015, vol. 119, p. 12236.
  100. Gallant, B.M., Kwabi, D.G., Mitchell, R.R., Zhou, J., Thompson, C.V., and Shao-Horn, Y., Influence of LiO2 morphology on oxygen reduction and evolution kinetics in Li–O2 batteries, Energy Environ. Sci., 2013, vol. 6, p. 2518.
  101. Lau, S. and Archer, L.A., Nucleation and growth of lithium peroxide in the Li–O2 battery, Nano Lett., 2015, vol. 15, p. 5995.
  102. Ortiz-Vitoriano, N., Amanchukwu, C.V., Kwabi, D., Hammond, P.T., and Shao-Horn, Y., Electrolyte Effects on Chemical Stability of NaO2 in Na–O2 Batteries, Proc. 228th ECS Meeting, 2015, p.265.
  103. Peng, Z., Freunberger, S.A., Hardwick, L.J., Chen, Y., Giordani, V., Barde, F., Novak, P., Graham, D., Tarascon, J.M., and Bruce, P.G., Oxygen reactions in a non-aqueous Li+ electrolyte, Angew. Chem., Int. Ed. Engl., 2011, vol. 50, p. 6351.
  104. Viswanathan, V., Thygesen, K.S., Hummelshoj, J.S., Norskov, J.K., Girishkumar, G., McCloskey, B.D., and Luntz, A.C., Electrical conductivity in Li2O2 and its role in determining capacity limitations in nonaqueous Li–O2 batteries, J. Chem. Phys., 2011, vol. 135, p. 214704.
  105. Gunasekara, I., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., and Abraham, K.M., Microelectrode diagnostics of lithium–air batteries, J. Electrochem. Soc., 2014, vol. 161, p.381.
  106. Dilimon, V.S., Lee, D.-G., Yim, S.-D., and Song, H.-K., Multiple roles of superoxide on oxygen reduction reaction in Li+-containing nonaqueous electrolyte: contribution to the formation of oxide as well as peroxide, J. Phys. Chem. C, 2015, vol. 119, p. 3472.
  107. Vitvitskaya, G.V. and Kozelkova, N.I., Electrode reactions of hydrogen peroxide at palladium in neutral and weakly alkaline electrolytes, Elektrokhimiya, 1971, vol. 7, p.663.
  108. Vitvitskaya, G.V., Strakhova, V.V., and Kozelkova, N.I., Electrode reactions of N2O2 at palladium in acid electrolytes, Zh. Prikl. Khim., 1972, vol. 45, p. 2429.
  109. Shao, M.H. and Adzic, R.R., Spectroscopic identification of the reaction intermediates in oxygen reduction on gold in alkaline solutions, J. Phys. Chem. B, 2005, vol. 109, p. 16563.
  110. Damjanovic, A., Dey, A., and Bockris, J.O’M., Kinetics of oxygen evolution and dissolution on platinum electrodes, Electrochim. Acta, 1966, vol. 11, p.791.
  111. Tarasevich, M.R. and Vilinskaya, V.S., Comparison of oxygen chemisorption from gas phase and during anodic polarization, Elektrokhimiya, 1971, vol. 7, p.710.
  112. Kastening, B. and Kazemiford, G., Elektrochemische reduktion von sauerstoff zum superoxid-anion in wassriger lösung (electrochemical reduction of oxygen to superoxide anions in aqueous solutions), Ber. Bunsen-Ges. Phys. Chem., 1970, vol. 74, p.551.
  113. Gunasekara, I., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., and Abraham, K.M., A study of the influence of lithium salt anions on oxygen reduction reactions in Li–air batteries, J. Electrochem. Soc., 2015, vol. 162, p. A1055.
  114. Zhai, D., Lau, K.Ch., Wang, H.-H., Wen, J., Miller, D.J., Lu, J., Kang, F., Li, B., Yang, W., Gao, J., Indacochea, E., Curtiss, L.A., and Amine, K., Interfacial effects on lithium superoxide disproportionation in Li–O2 batteries, Nano Lett., 2015, vol. 15, p. 1041.
  115. Viswanathan, V., Norskov, J.K., Speidel, A., Scheffler, R., Gowda, S., and Luntz, A.C., Li2O2 kinetic overpotentials: tafel plots from experiment and firstprinciples theory, J. Phys. Chem. Lett., 2013, vol. 4, p.556.
  116. Wang, Z-L., Xu, D., Xu, J-J., and Zhang, X-B., Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes, Chem. Soc. Rev., 2014, vol. 43, p. 7746.
  117. Paliteiro, C., Hamnett, A., and Goodenough, J.B., The electroreduction of oxygen at pyrolytic graphite, J. Electroanal. Chem., 1987, vol. 233, p.147.
  118. Bohm, H., Fuel cell assemblies with an acidic electrolyte, J. Power Sources, 1977, vol. 1, p.177.
  119. Radyushkina, K.A., Levina, O.A, Tarasevich, M.R., Burshtein, R.Kh., Berezin, B.D., Shormanova, L.P., and Koifman, O.I., Oxygen reduction at porous carbon electrodes activated by metal phthalocyanines, Elektrokhimiya, 1975, vol. 11, p.989.
  120. Radin, M.D., Tian, F., and Siegel, D.J., Electronic structure of Li2O2 {0001} surfaces, J. Mater. Sci., 2012, vol. 47, p. 7564.
  121. Varley, J.B., Viswanathan, V., and Luntz, A.C., Lithium and oxygen vacancies and their role in Li2O2 charge transport in Li–O2 batteries, Energy Environ. Sci., 2014, vol. 7, p.720.
  122. Luntz, A.C., Viswanathan, V., Voss, J., Varley, J.B., Norskov, J.K., Scheffler, R., and Speidel, A., Tunneling and polaron charge transport through Li2O2 in Li–O2 batteries, J. Phys. Chem. Lett., 2013, vol. 4, p. 3494.
  123. Kang, J., Jung, Y.S., Wei, S.-H., and Dillon, A.C., Implications of the formation of small polarons in Li2O2 for Li–air batteries, Phys. Rev. B, 2012, vol. 85, p. 035210.
  124. Yuzhanina, A.V., Luk’yanicheva, V.I., Shumilova, N.A., and Bagotzky, V.S., Study of oxygen cathodic reduction mechanism at smooth platinum subjected to anodic–cathodic trearment in alkaline solution, Elektrokhimiya, 1970, vol. 6, p. 1074.
  125. Tarasevich, M.R. and Vilinskaya, V.S., Study of parallel-sequential stages of oxygen and hydrogen peroxide reactions. VI. Oxygen and hydrogen peroxide reactions at palladium electrode in different pH solutions, Elektrokhimiya, 1972, vol. 8, p. 1489.
  126. Jirkovsky, J.S., Subbaraman, R., Strmcnik, D., Harrison, K.L., Diesendruck, C.E., Assary, R.S., Frank, O., Kobr, L., Wiberg, G.K.H., Genorio, B., Connell, J.G., Lopes, P.P., Stamenkovic, V., Curtiss, L.A., Moore, J.S., Zavadil, K.R., and Markovic, N.M., Water as a promoter and catalyst for dioxygen electrochemistry in aqueous and organic media, ACS Catal., 2015, vol. 5, p. 6600.
  127. Korchagin, O.V., Tarasevich, M.R., Tripachev, O.V., and Bogdanovskaya, V.A., Catalysis of oxygen reaction on positive electrode of a lithium–oxygen cell in the presence of metallic nanosystems, Prot. Met., 2016, vol. 52, p.581.
  128. Lu, Y.C., Gasteiger, H.A., Parent, M., Chiloyan, V., and Shao-Horn, Y., The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries batteries and energy storage, Electrochem. Solid-State Lett., 2010, vol. 13, p.69.
  129. Yang, Y., Liu, W., Wang, Y., Wang, X., Xiao, L., Lu, J., and Zhuang, L., A Pt–Ru catalyzed rechargeable oxygen electrode for Li–O2 batteries: performance improvement through Li2O2 morphology control, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 20618.
  130. Haro, M., Vicente, N., and Garcia-Belmonte, G., Oxygen reduction reaction promotes Li+ desorption from cathode surface in Li–O2 batteries, Adv. Mater. Int., 2015, vol. 2, p. 1500369.
  131. Bondue, C.J., Reinsberg, P., Abd-El-Latif, A.A., and Baltruschat, H., Oxygen reduction and oxygen evolution in DMSO based electrolytes: the role of the electrocatalyst, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 29394.
  132. Abraham, K.M., Electrolyte-directed reactions of the oxygen electrode in lithium-air batteries, J. Electrochem. Soc., 2015, vol. 162, p. 3021.
  133. Pearson, R.G., Hard and soft acids and bases, J. Am. Chem. Soc., 1963, vol. 85, p. 3533.
  134. Linert, W., Camard, A., Armand, M., and Michot, C., Anions of low lewis basicity for ionic solid state electrolytes, Coord. Chem. Rev., 2002, vol. 226, p.137.
  135. Khetan, A., Luntz, A., and Viswanathan, V., Tradeoffs in capacity and rechargeability in nonaqueous Li–O2 batteries: solution-driven growth vs nucleophilic stability, J. Phys. Chem. Lett., 2015, vol. 6, p. 1254.
  136. Safari, M., Adams, B.D., and Nazar, L.F., Kinetics of oxygen reduction in aprotic Li–O2 cells: a modelbased study, J. Phys. Chem. Lett., 2014, vol. 5, p. 3486.
  137. Gallant, B.M., Mitchell, R.R., Kwabi, D.G., Zhou, J., Zuin, L., Thompson, C.V., and Shao-Horn, Y., Chemical and morphological changes of Li–O2 battery electrodes upon cycling, J. Phys. Chem. C, 2012, vol. 116, p. 20800.
  138. Black, R., Oh, S.H., Lee, J.-H., Yim, T., Adams, B., and Nazar, L.F., Screening for superoxide reactivity in Li–O2 batteries: effect on Li2O2 /LiOH crystallization, J. Am. Chem. Soc., 2012, vol. 134, p. 2902.
  139. Lau, S. and Archer, L.A., Nucleation and growth of lithium peroxide in the Li–O2 battery, Nano Lett., 2015, vol. 15, p. 5995.
  140. Aetukuri, N.B., McCloskey, B.D., Garcia, J.M., Krupp, L.E., Viswanathan, V., and Luntz, A.C., Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries, Nat. Chem, 2015, vol. 7, p.50.
  141. Schwenke, K.U., Metzger, M., Restle, T., Piana, M., and Gasteiger, H.A., The influence of water and protons on Li2O2 crystal growth in aprotic Li–O2 cells, J. Electrochem. Soc., 2015, vol. 162, p.573.
  142. Che, Y., Tsushima, M., Matsumoto, F., Okajima, T., Tokuda, K., and Ohsaka, T., Water-induced disproportionation of superoxide ion in aprotic solvents, J. Phys. Chem., 1996, vol. 100, p. 20134.
  143. Meini, S., Piana, M., Tsiouvaras, N., Garsuch, A., and Gasteiger, H.A., The effect of water on the discharge capacity of a non-catalyzed carbon cathode for Li–O2 batteries, Electrochem. Solid-State Lett., 2012, vol. 15, p.45.
  144. Adams, B.D., Radtke, C., Black, R., Trudeau, M.L., Zaghib, K., and Nazar, L.F., Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge, Energy Environ. Sci., 2013, vol. 6, p. 1772.
  145. McCloskey, B.D., Bethune, D.S., Shelby, R.M., Mori, T., Scheffler, R., Speidel, A., Sherwood, M., and Luntz, A.C., Limitations in rechargeability of Li–O2 batteries and possible origins, J. Phys. Chem. Lett., 2012, vol. 3, p. 3043.
  146. Xu, W., Hu, J., Engelhard, M.H., Towne, S.A., Hardy, J.S., Xiao, J., Feng, J., Hu, M.Y., Zhang, J., Ding, F., Gross, M.E., and Zhang, J.-G., The stability of organic solvents and carbon electrode in nonaqueous Li–O2 batteries, J. Power Sources, 2012, vol. 215, p.240.
  147. McCloskey, B.D., Scheffler, R., Speidel, A., Girishkumar, G., and Luntz, A.C., On the mechanism of non-aqueous Li–O2 electrochemistry on C and its kinetic overpotenitals: some implications for Li–air batteries, J. Phys. Chem. C, 2012, vol. 116, p. 23897.
  148. El-Latif, A.A., Bondue, C.J., Ernst, S., Hegemann, M., Kaul, J.K., Khodayari, M., Mostafa, E., Stefanova, A., and Baltruschat, H., Insights into electrochemical reactions by differential electrochemical mass spectrometry, Trends Anal. Chem., 2015, vol. 70, p.4.
  149. Bondue, C.J., Abd-El-Latif, A.A., Hegemann, P., and Baltruschat, H., Quantitative study for oxygen reduction and evolution in aprotic organic electrolytes at gas diffusion electrodes by dems, J. Electrochem. Soc., 2015, vol. 162, p.479.
  150. Lu, J. and Amine, Kh., Recent Research Progress on Non-aqueous Lithium–Air Batteries from Argonne National Laboratory., Energies, 2013,vol. 6. p. 6016.151.
  151. Cheng, F. and Chen, J., Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts, Chem. Soc. Rev., 2012, vol. 41, p. 2172.
  152. Mitchell, R.R., Gallant, B.M., Thompson, C.V., and Shao-Horn, Y., All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries, Energy Environ. Sci., 2011, vol. 4, p. 2952.
  153. Black, R., Lee, J.-H., Adams, B., Mims, Ch.A., and Nazar, L.F., The role of catalysts and peroxide oxidation in lithium–oxygen batteries, Angew. Chem., Int. Ed. Engl., 2013, vol. 52, p.392.
  154. Mitchell, R.R., Gallant, B.M., Shao-Horn, Y., and Thompson, C.V., Mechanisms of morphological evolution of Li2O2 particles during electrochemical growth, J. Phys. Chem. Lett., 2013, vol. 4, p. 1060.
  155. Radin, M.D., Rodriguez, J.F., Tian, F., and Siegel, D.J., Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not, J. Am. Chem. Soc., 2012, vol. 134, no. 2, p. 1093.
  156. Hummelshoj, J.S., Blomqvist, J., Datta, S., Vegge, T., Rossmeisl, J., Thygesen, K.S., Luntz, A.C., Jacobsen, K.W., and Norskov, J.K., Communications: elementary oxygen electrode reactions in the aprotic Li–air battery, J. Chem. Phys., 2010, vol. 132, p. 071101.
  157. Garcia-Lastra, J.M., Bass, J.D., and Thygesen, K.S., Strong excitonic and vibronic effects determine the optical properties of Li2O2, J. Chem. Phys., 2011, vol. 135, p. 121101.
  158. Tian, F., Radin, M.D., and Siegel, D.J., Enhanced charge transport in amorphous Li2O2, Chem. Mater., 2014, vol. 26, p. 2952.
  159. Mo, Y., Ong, Sh.P., and Ceder, G., First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery, Phys. Rev. B, 2011, vol. 84, p. 205446.
  160. Garcia-Lastra, J.M., Myrdal, J.S.G., Christensen, R., Thygesen, K.S., and Vegge, T., Dft+u study of polaronic conduction in Li2O2 and Li2Co3: implications for Li–air batteries, J. Phys. Chem. C, 2013, vol. 117, p. 5568.
  161. Hummelshoj, J.S., Luntz, A.C., and Norskov, J.K., Theoretical evidence for low kinetic overpotentials in Li–O2 electrochemistry, J. Chem. Phys., 2013, vol. 138, p. 03470.
  162. McCloskey, B.D., Bethune, D.S., Shelby, R.M., Girishkumar, G., and Luntz, A.C., Solvents’ critical role in nonaqueous lithium–oxygen battery electrochemistry, J. Phys. Chem. Lett., 2011, vol. 2, p. 1161.
  163. Fan, W., Cui, Zh., and Guo, X., Tracking formation and decomposition of abacus-ball-shaped lithium peroxides in Li–O2 cells, J. Phys. Chem. C, 2013, vol. 117, p. 2623.
  164. Lu, Y.-Ch., Kwabi, D.G., Yao, K.P.C., Harding, J.R., Zhou, J., Zuin, L., and Shao-Horn, Y., The discharge rate capability of rechargeable Li–O2 batteries, Energy Environ. Sci., 2011, vol. 4, p. 2999.
  165. Xu, D., Wang, Zh.-L., Xu, J.-J., Zhang, L.-L., and Zhang, X.-B., Novel dmso-based electrolyte for high performance rechargeable Li–O2 batteries, Chem. Commun., 2012, vol. 48, p. 6948.
  166. Das, U., Lau, K.Ch., Redfern, P.C., and Curtiss, L.A., Structure and stability of lithium superoxide clusters and relevance to Li–O2 batteries, J. Phys. Chem. Lett., 2014, vol. 5, p.813.
  167. Tarasevich, M.R., Processes at oxygen electrode of fuel cell, Doctoral (Chem.) Dissertation, Moscow: IELAN SSSR, 1971.
  168. Li, J., Zhao, Y., Zou, M., Wu, C., Huang, Z., and Guan, L., An effective integrated design for enhanced cathodes of Ni foam-supported Pt/carbon nanotubes for Li–O2 batteries, Appl. Mater. Int., 2014, vol. 6, p. 12479.
  169. Sun, B., Munroe, P., and Wang, G., Ruthenium nanocrystals as cathode catalysts for lithium–oxygen batteries with a superior performance, Sci. Reports, 2013, p. 2247.
  170. Lei, Y., Lu, J., Luo, X., Wu, T., Du, P., Zhang, X., Ren, Y., Wen, J., Miller, D.J., Miller, J.T., Sun, Y.-K., Elam, J.W., and Amine, K., Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: application for rechargeable lithium–O2 battery, Nano Lett., 2013, vol. 13, p. 4182.
  171. Lu, Y.-Ch. and Shao-Horn, Y., Probing the reaction kinetics of the charge reactions of nonaqueous Li–O2 batteries, J. Phys. Chem. Lett., 2013, vol. 4, p.93.
  172. Chase, G.V., Zecevic, S., Walker, W., Uddin, J., Sasaki, K.A., Vyacheslav, V., Blanco, M., and Addison, D., Pat. US no. 13093759, 2011.
  173. Chen, Y., Freunberger, S.A., Peng, Z., Fontaine, O., and Bruce, P.G., Charging a Li–O2 battery using a redox mediator, Nature Chem., 2013, vol. 5, p.489.
  174. Matsuda, S., Hashimoto, K., and Nakanishi, S., Efficient Li2O2 formation via aprotic oxygen reduction reaction mediated by quinone derivatives, J. Phys. Chem. C, 2014, vol. 118, p. 18397.
  175. Lacey, M.J., Frith, J.T., and Owen, J.R., A redox shuttle to facilitate oxygen reduction in the lithium–air battery, Electrochem. Commun., 2013, vol. 26, p.74.
  176. Sun, D., Shen, Y., Zhang, W., Yu, L., Yi, Z., Yin, W., Wang, D., Huang, Y., Wang, J., Wang, D., and Goodenough, J.B., A solution-phase bifunctional catalyst for lithium–oxygen batteries, J. Am. Chem. Soc., 2014, vol. 136, p. 8941.
  177. Walker, W., Giordani, V., Uddin, J., Bryantsev, V.S., Chase, G.V., and Addison, D., A rechargeable Li–O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte, J. Am. Chem. Soc., 2013, vol. 135, p. 2076.
  178. Uddin, J., Bryantsev, V.S., Giordani, V., Walker, W., Chase, G.V., and Addison, D., Lithium nitrate as regenerable SEI stabilizing agent for rechargeable Li–O2 batteries, J. Phys. Chem. Lett., 2013, vol. 4, p. 3760.
  179. Bergner, B.J., Hofmann, C., Schurmann, A., Schroder, D., Peppler, K., Schreinerb, P.R., and Janek, J., Understanding the fundamentals of redox mediators in Li–O2 batteries: a case study on nitroxides, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 31769.
  180. Aurbach, D., Hirshberg, D.H., Sharon, D., Afri, M., Garsuch, A., and Frimer, A.A., The Catalytic Behavior of Lithium Nitrate in Li–O, 227th ECS Meeting Abstracts, 2015, p.249.
  181. Burke, C.M., Pande, V., Khetan, A., Viswanathan, V., and McCloskey, B.D., Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O2 battery capacity, Proc. Nat. Acad. Sci. U.S.A., 2015, vol. 112, p. 9293.
  182. Liu, T., Leskes, M., Yu, W., Moore, A.J., Zhou, L., Bayley, P.M., Kim, G., and Grey, C.P., Cycling Li–O2 batteries via LiOH formation and decomposition, Science, 2015, vol. 350, p.530.
  183. Davydova, E.S. and Tarasevich, M.R., Studies of selectivity of oxygen reduction reaction in acidic electrolyte on electrodes modified by products of pyrolysis of polyacrylonitrile and metalloporphyrins, Russ. J. Electrochem., 2016, vol. 52, p. 1131.
  184. Luntz, A.C., McCloskey, B.D., Gowda, S., Horn, H., and Viswanathan, V., in: The Lithium-Air Battery: Fundamentals, Imanishi, N., Luntz, A.C., and Bruce, P.G., Eds., New York: Springer, 2014, p.103.
  185. Zhao, G., Niu, Y., Zhang, L., and Sun, K., Ruthenium oxide modified titanium dioxide nanotube arrays as carbon and binder free lithium–air battery cathode catalyst, J. Power Sources, 2014, vol. 270, p.386.
  186. Jian, Z., Liu, P., Li, F., He, P., Guo, X., Chen, M., and Zhou, H., Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li–O2 batteries, Angew. Chem., Int. Ed. Engl., 2014, vol. 53, p. 442.