Applicability of Alginate Film Entrapped Yeast for Microbial Fuel Cell

U. Mardiana U. Mardiana , Ch. Innocent Ch. Innocent , M. Cretin M. Cretin ,  Buchari Buchari , H. Setiyanto H. Setiyanto , R. Nurpalah R. Nurpalah , M. Kusmiati M. Kusmiati
Российский электрохимический журнал
Abstract / Full Text

New strategies are proposed for modification of the anode of a Microbial Fuel Cell (MFC). Immobilization of yeast cells as electrogenic microorganism in MFC was reported using alginate. Yeast cells entrapment within alginate matrices was done through films deposited at the surface of a carbon felt electrode and the resulting anodes were characterized by chronoamperometry. Yeast entrapped within alginate films on carbon felt oxidized glucose and generates a current by direct and mediated electrons transfer from yeast cells to the carbon electrode. The result substantiated that immobilization of yeast for MFC could be a promising method to product green electricity.

Author information
  • Institut Européen des Membranes, ENSCM-UM2-CNRS, (UMR 5635), Université de Montpellier 2, CC047, place E. Bataillon, Montpellier Cedex 5, 34293, France

    U. Mardiana, Ch. Innocent & M. Cretin

  • Institut Teknologi Bandung, Bandung, 40132, Indonesia

    U. Mardiana,  Buchari & H. Setiyanto

  • STIKEs Bakti Tunas Husada, Tasikmalaya, 46115, Indonesia

    U. Mardiana, R. Nurpalah & M. Kusmiati

  1. Potter, A.M.C., Character, B., and Sep, N., Electrical Effects Accompanying the Decomposition of Organic Compounds, Royal Soc. Publ., 2010, vol. 84, p. 260.
  2. Logan, B.E., Exoelectrogenic bacteria that power microbial fuel cell, Nat. Reviews Microbiol., 2009, vol. 7, p. 375.
  3. Zou, Y., Xiang, C., Yang, L., Sun, L., Xu, F., and Cao Z., A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material, Hydrogen Energy, 2008, vol. 33, p. 4856.
  4. Liu, J., Qiao, Y., Xian, C., Lim, S., Song, H., and Ming, C., Bioresource technology graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells, Bioresource Tech., 2012, vol. 114, p. 275.
  5. Mardiana, U., Innocent, C., Cretin, M., Buchari, B., and Gandasasmita, S., Yeast fuel cell: application for desalination. IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 107, p. 012049.
  6. Zhang, Y.M., Mo, G.Q., Li, X.W., Zhang, W.D., Zhang, J.Q., Ye, J.S., Huang, X.D., and Yu, C.Z., A graphene modified anode to improve the performance of microbial fuele cell, J. Power Sources, 2011, vol. 196, p. 5402.
  7. Khrisnaraj, N.R., Karthikeyan, R., Berchmans, S., Chandran, S., and Pal, P., Functionalization of electrochemically deposited chitosan films with alginate and Prussian blue for enhanced performance of microbial fuel cells, Electrochim. Acta, 2013, vol. 112, p. 465.
  8. Walker, A.L. and Walker, C.W., Biological fuel cell and an application as a reserve power source, J. Power Sources, 2006, vol. 160, p. 123.
  9. Mardiana, U., Innocent, C., Jarrar, H., Cretin, M., Buchari, B., and Gandasasmita, S., Electropolymerized neutral red as redox mediator for yeast fuel cell, Int. J. Electrochem. Sci., 2015, vol. 10, p. 8886.
  10. Raghavulu, S.V., Goud, R.K., Sarma, P.N., and Mohan, S.V., Bioresource technology saccharomyces cerevisiae as anodic biocatalyst for power generation in biofuel cell: influence of redox condition and substrate load, Bioresource Tech., 2011, vol. 102, p. 2751.
  11. Babanova, S., Hubenova, Y., and Mitov, M., Influence of artificial mediators on yeast-based fuel cell performance, J. Biosci. Bioeng., 2011, vol. 112, p. 379.
  12. Popov, A.L., Kim, J.R., Dinsdale, R.M., Esteves, S.R., Guwy, A.J., and Premier, G.C., The effect of physicochemically immobilized methylene blue and neutral red on the anode of microbial fuel cell, Biotechnol. Bioprocess Eng., 2012, vol. 17, p. 361.
  13. Wang, K., Liu, Y., and Chen, S., Improved microbial electrocatalysis with neutral red immobilized electrode, J. Power Sources, 2011, vol. 196, p. 164.
  14. Park, D.H., Laivenieks, M., Guettler, M.V., Jain, M.K., and Zeikus, J.G., Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production, Appl. Environ. Microbiol., 1999, vol. 65, p. 2912.
  15. Watson, V.J. and Logan, B.E., Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures, Biotechnol. Bioeng., 2010, vol. 105, p. 489.
  16. Ishii, S., Watanabe, K., Yabuki, S., Logan, B.E., and Sekiguchi, Y., Comparison of electrode reduction activities of Geobacter sulfurreducens and enriched consortium in air-cathode microbial fuel cell, Appl. Environ. Microbiol., 2008, vol. 74, p. 7348.
  17. Liu, Z.D, Du, Z.W., Lian, J., Zhu, X.Y., Li, S.H., and Li, H.R., Improving energy accumulation using Rhodoferax ferrireducens as biocatalyst, Lett. Appl. Microbiol., 2007, vol. 44, p. 393.
  18. Logan, B.E., Exoelectrogenic bacteria that power microbial fuel cell, Nat. Rev, Microbiol., 2009, vol. 7, p. 375.
  19. Prasad, D., Arun, S., Murugesan, M., Padmanaban, S., Satyanarayanan, R.S, Berchmans, S., and Yegnaraman, V., Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell, Biosens. Bioelectron., 2007, vol. 22, p. 2604.
  20. Sayed, E.T., Tsujiguchi, T., and Nakagawa, N., Catalytic activity of baker’s yeast in a mediatorless microbial fuel cell, Bioelectrochem., 2012, vol. 86, p. 97.
  21. Park, D.H. and Zeikus, J.G., Electricity generation in microbial fuel cell using neutral red as an electronophore, Appl. Environ. Microbiol., 2000, vol. 66, p. 1292.
  22. Stolarzewicz, I., Bialecka-Florjancyk, E., Majewska, E., and Krzyczkowska, J., Immobilization of yeast on polimeric supports, Chem. Biochem. Eng., 2011, vol. 25, p. 135.
  23. Zhou, Z.D., Li, G.Y., and Li, Y.J., Immobilization of Saccharomyces cereviceae alcohol dehydrogenase on hybrid alginate chitosan beads, Int. J. Biol. Macromol., 2010, vol. 47, p. 21.
  24. Panesar, R., Panesar, P.S., Singh, R.S., and Bera, M.B., Applicability of alginate entrapped yeast cells for the production of lactose hydrolyzed milk, Food Process Eng., 2007, vol. 30, p. 472.
  25. Liu, R., Li J., and Shen, F., Refining bioethanol from stalk juice of sweet sorghum by immobilized yeast fermentation, Renew. Energy, 2008, vol. 33, p. 1130.
  26. Cha, C., Kim, S.R., Jin, Y.-S, and Kong, H., Tuning structural durability of yeast-encapsulating alginate gel beads with interpenetrating networks for sustained bioethanol production, Biotechnol. Bioeng., 2012, vol. 109, p. 63.
  27. Qun, J., Shanjing, Y., and Lehe, M., Tolerance of immobilized baker’s yeast in organic solvents, Enzyme Microb. Technol., 2002, vol. 30, p. 721.
  28. Cordona, C.A. and Sanchez, O.J., Fuel ethanol production: process design trends and integration opportunities, Bioresour. Technol., 2007, vol. 98, p. 2415.
  29. Kregiel, D., Berlowska, J., and Ambroziak, W., Growth and metabolic activity of conventional and non-conventional yeasts immobilized in foamed alginate, Enzyme Microb. Technol., 2013, vol. 53, p. 229.
  30. Yong, Y.-C., Liao, Z.-H., Sun, J.-Z., Zheng, T., Jiang, R.-R., and Song, H., Enhancement of coulombic efficiency and salt tolerance in microbial fuel cells by graphite/alginate granules immobilization of Shewanella oneidensis MR-1., Process Biochem., 2013, vol. 48, p. 1947.
  31. Tuncagil, S., Odaci, D., Varis, S., Timur, S., and Toppare, L., Electrochemical polymerization of 1-(4-nitrophenyl)-2,5-di(2-thienyl)-1 H-pyrrole as a novel immobilization platform for microbial sensing, Bioelectrochem, 2009, vol. 76, p. 169.
  32. Kuhn, S.P. and Pfister, R.M., Adsorption of mixed metals and cadmium by calcium-alginate immobilized Zoogloearamigera, Appl. Microbiol. Biotechnol., 1989, vol. 31, p. 612.
  33. Huguet, M.L., Calcium-alginate beads coated with polycationic polymers: comparison of chitosan and DEAE dextran, Process Biochem., 1996, vol. 31, p. 347.
  34. Pajic-Lijakovic, I., Playsic, M., Bugarski, B., and Nedovic, V., Ca-alginate hydrogel mechanical transformations—the influence on yeast cell growth dynamics, J. Biotechnol., 2007, vol. 129, p. 446.
  35. Meena, K. and Raja, T.K., Immobilization of saccharomyces cerevisiae cells by gel entrapment using various metal alginates, World J. Microbiol. Biotechnol., 2006, vol. 22, p. 651.
  36. Gombotz, W.R. and Wee, S.F., Protein release from alginate matrices, Adv. Drug Delivery Rev., 1998, vol. 31, p. 267.
  37. Călinescu, I., Chipurici, P., Trifan, A., and Bădoiu, C., Immobilization of saccharomyces cereviceae for the production of bioethanol, U.P.B. Sci. Bull. Ser. B, 2012, vol. 74, p. 34.
  38. Balci, Z., Akbulut, U., Toppare, L., Alkan, S., Bakir, U., and Yagci, Y., Immobilization of yeast cells in several conducting polymer matrices, Macromol. Sci.-Pure Appl. Chem., 2002, vol. 39, p. 183.
  39. Abdelkader, E., Nadjia, L., and Ahmed, B., Degradation study of phenazin neutral red from aqueous suspension by paper sludge, Chem. Eng. Process Technol., 2011, vol. 2, p. 1.
  40. Iram, M., Guo, C., Guan, Y., Ishfaq, A., and Liu, H., Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres, Hazard Mater., 2010, vol. 181, p. 1039.
  41. Liu, R., Li, J., and Shen, F., Refining bioethanol from stalk juice of sweet sorghum by immobilized yeast fermentation, Renew. Energy, 2008, vol. 33, p. 1130.
  42. Stuart, W., Jason, K., and Shawn, A., Optimizing biofuel cell performance using a targeted mixed mediator combination, Electroanal., 2006, vol. 18, p. 2001.
  43. Park, D.H., Kim, S.K., Shin, I.H., and Jeong, Y.J., Electricity production in biofuel cell using modified graphite electrode with neutral red, Biotechnol. Lett., 2000, vol. 22, p. 1301.
  44. Park, D.H. and Zeikus, J.G., Utilization of electrically reduced neutral red by Actinobacillus succinogens: physiological function of neutral red in membrane driven fumarate reduction and energy conservation, Bacteriol., 1999, vol. 181, p. 2403.
  45. Rehn, G., Grey, C., Branneby, C., Lindberg, L., and Adlercreutz, P., Activity and stability of different immobilized preparations of recombinant E. coli cells containing omega-transaminase, Process Biochem., 2012, vol. 47, p. 1129.
  46. Feldmann, H., Yeast Molecular Biology—a Short Compendium on Basic Features and Novel Aspects, Munich: Univ. Munich, 2005.
  47. Zebda, A., Gondranm, C., Cinguin, P., and Cosnier, S., Glucose biofuel cell construction based on enzyme, graphite particle and redox mediator compression, Sens. Actuators, 2012, vol. 173, p. 760.