Examples



mdbootstrap.com



 
Статья
2022

Electrochemical Properties, Antimicrobial Activity and Photocatalytic Performance of Cerium-Iron Oxide Nanoparticles


A. K. SoğuksuA. K. Soğuksu, S. KerliS. Kerli, M. KavgacıM. Kavgacı, A. GündeşA. Gündeş
Российский журнал физической химии А
https://doi.org/10.1134/S0036024422010228
Abstract / Full Text

Cerium doped iron oxide nano-structured particles were synthesized by the hydrothermal method, which is a simple and inexpensive. The structure and properties of the samples were characterized by X-ray diffraction analysis (XRD), UV–Vis absorption spectroscopy (UV), scanning electron microscopy (SEM), and cyclic voltammetry (CV). Ciprofloxacin (CIP) degradation under visible light was observed to increase with increase in the ratio of cerium in the samples; the degradation percentage was 73% for the Fe20Ce sample. The electrodes produced from the synthesized particles were clearly seen to have an effect on the specific capacitance value of the cerium additive at a constant 100 mV–1 scanning rate. In the antimicrobial activity analysis performed by Kirby–Bauer’s disk diffusion method, it was determined that the activity of Fe20Ce nanoparticles against Escherichia coli (E. coli) bacteria was better than in the control group with antibiotics used in the study. An increase in the amount of cerium in the cerium-doped iron oxide nanoparticles positively affected their photocatalytic activity under visible light, the specific capacitance value and the efficiency against E-coli bacteria. Cerium doped iron oxide nanoparticles have been found to be a promising material that can be used in wastewater treatment, energy storage and antibacterial applications.

Author information
  • Kahramanmaras Science and Art Center, Kahramanmaraş, TurkeyA. K. Soğuksu
  • Department of Energy Systems Engineering, Kahramanmaras Istiklal University, Kahramanmaraş, TurkeyS. Kerli
  • Kansas Polymer Research Center, Pittsburg State University, KS 66762, Pittsburg, USAS. Kerli
  • Elbistan Vocational School of Health Services, Department of Opticianry, Kahramanmaraş Istiklal University, Kahramanmaraş, TurkeyM. Kavgacı
  • Research and Development Centre for University-Industry-Public Relations (USKIM), Kahramanmaras Sutcu Imam University, Kahramanmaraş, TurkeyA. Gündeş
References
  1. C. Y. Lin and D. Syrgabayeva, Asia Pacif. Manage. Rev. 21, 125 (2016).
  2. D. Vidyasagar et al., Appl. Catal. B 221, 339 (2018).
  3. J. Ni, J. Xue, L. Xie, et al., Phys. Chem. Chem. Phys. 20, 414 (2018). https://doi.org/10.1039/c7cp06682a
  4. C. Liu, H. Shan, L. Liu, et al., Ceram. Int. 40, 2395 (2014). https://doi.org/10.1016/j.ceramint.2013.08.011
  5. M. Tadic, M. Panjan, V. Damnjanovic, and L. Milosevic, Appl. Surf. Sci. 320, 183 (2014). https://doi.org/10.1016/j.apsusc.2014.08.193
  6. A. S. Teja and P. Y. Koh, Prog. Cryst. Growth Charact. Mater. 55, 22 (2009).
  7. M.-C. Huang, Ceram. Int. 40, 10537 (2014).
  8. H. Liang, W. Chen, Y. Yao, et al., Ceram. Int. 40, 10283 (2014).
  9. M. Khalil, J. Yu, N. Liu, and R. L. Lee, Colloid. Surf. A 453, 7 (2014).
  10. A. Trovarelli, Catal. Rev. 38, 439 (1996). https://doi.org/10.1080/01614949608006464
  11. M. Ozawa, J. Alloys Compd. 275–277, 886 (1998). https://doi.org/10.1016/s0925-8388(98)00477-0
  12. C. Larese, M. Granados, F. Galisteo, et al., Appl. Catal. B 62, 132 (2006). https://doi.org/10.1016/j.apcatb.2005.06.008
  13. P. Munusamy, S. Sanghavi, T. Varga, and T. Suntharampillai, RSC Adv. 4, 8421 (2014).
  14. Z. Gu, K. Li, S. Qing, et al., RSC Adv. 4, 47191 (2014). https://doi.org/10.1039/c4ra06715k
  15. F. J. Pérez-Alonso, M. López Granados, M. Ojeda, et al., Chem. Mater. 17, 2329 (2005). https://doi.org/10.1021/cm0477669
  16. F. J. Pérez-Alonso, M. López Granados, M. Ojeda, et al., J. Phys. Chem. B 110, 23870 (2006).
  17. F. Perez Alonso, I. Melıan-Cabrera, M. Lopezgranados, et al., J. Catal. 239, 340 (2006). https://doi.org/10.1016/j.jcat.2006.02.008
  18. N. S. Arul, D. Mangalaraj, R. Ramachandran, et al., J. Mater. Chem. A 3, 15248 (2015). https://doi.org/10.1039/c5ta02630j
  19. G. Coria, T. Pérez, I. Sirés, et al., Chemosphere 198, 174 (2018).
  20. L. Pan, J. Li, C. Li, et al., J. Hazard. Mater. 343, 59 (2018).
  21. D. Calamari, E. Zuccato, S. Castiglioni, et al., Environ. Sci. Technol. 37, 1241 (2003).
  22. E. De Bel, J. Dewulf, B. de Witte, et al., Chemosphere 77, 291 (2009).
  23. H. G. Guo et al., Environ. Sci. Pollut. Res. 20, 3202 (2013).
  24. Y. Fei, Y. Li, S. Han, and J. Ma, J. Colloid Interface Sci. 484, 196 (2016).
  25. S. Wu et al., Chem. Eng. J. 230, 389 (2013).
  26. V. B. Lima, L. A. Goulart, R. S. Rocha, et al., Chemosphere 247, 125807 (2020).
  27. K. A. Owusu et al., Nat. Commun. 8 (2017).
  28. M. R. Belkhedkar, A. U. Ubale, Y. S. Sakhare, et al., J. Assoc. Arab Univ. Basic Appl. Sci. 21, 38 (2016).
  29. A. Rufus, N. Sreeju, V. Vilas, and D. Philip, J. Mol. Liq. 242, 537 (2017).
  30. C. A. Demarchi et al., Int. J. Biol. Macromol. 107, 42 (2018).
  31. S. Shams et al., J. Photochem. Photobiol. B 199, 111632 (2019).
  32. Y. Huang et al., Chem. Eng. J. 388 (2020).
  33. M. Mayakannan, S. Gopinath, and S. Vetrivel, Mater. Chem. Phys. 242, 122282 (2020).
  34. M. Arshad et al., J. Mol. Struct. 1180, 244 (2019).
  35. H. Kareem Zainab et al., J. Pharm. Sci. Res. 10, 1980 (2018).
  36. A. Raghunath and E. Perumal, Int. J. Antimicrob. Agents 49, 137 (2017). https://doi.org/10.1016/j.ijantimicag.2016.11.011
  37. G. Nie et al., Electrochim. Acta 231, 36 (2017).
  38. G. Oskueyan, M. M. Lakouraj, and M. Mahyari, Electrochim. Acta 299, 125 (2019).
  39. H. Liu, G. Wang, J. Park, et al., Electrochim. Acta 54, 1733 (2009). https://doi.org/10.1016/j.electacta.2008.09.071
  40. X. L. Gou, G. X. Wang, J. S. Park, et al., Nanotechnology 19, 125606 (2008).
  41. T. Teranishi, A. Wachi, M. Kanehara, et al., J. Am. Chem. Soc. 130, 4210 (2008).
  42. C. Karunakaran and S. Senthilvelan, Electrochem. Commun. 8, 95 (2006).
  43. C. Z. Wu, P. Yin, X. Zhu, et al., J. Phys. Chem. B 110, 17806 (2006).
  44. O. Shekhah, W. Ranke, A. Schule, et al., Angew. Chem. Int. Ed. 42, 5760 (2003).
  45. X. W. Teng, X. Y. Liang, S. Rahman, and H. Yang, Adv. Mater. 17, 2237 (2005).
  46. Y. Liu and D. Z. Sun, J. Hazard. Mater. 143, 448 (2007).
  47. C. A. Demarchi et al., Int. J. Biol. Macromol. 155, 614 (2020).
  48. P. Rana, S. Sharma, R. Sharma, and K. Banerjee, Mater. Sci. Energy Technol. 2, 15 (2019).
  49. J. Feng et al., Mater. Sci. Eng. C 101, 138 (2019).
  50. S. Kerli and A. K. Soğuksu, Zeitschr. Kristallogr.– Cryst. Mater. 234, 725 (2019). https://doi.org/10.1515/zkri-2019-0043
  51. R. Bakkiyaraj, M. Balakrishnan, G. Bharath, and N. Ponpandian, J. Alloys Compd. 724, 555 (2017).
  52. S. Rajeshkumar and P. Naik, Biotechnol. Rep. 17, 1 (2018).
  53. I. A. P. Farias, C. C. L. Dos Santos, and F. C. Sampaio, Biomed Res. Int. 2018 (2018).
  54. A. Rahdar, H. Beyzaei, F. Askari, and G. Z. Kyzas, Appl. Phys. A 126, 1 (2020).
  55. Clinical and Laboratory Standards Institute, Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard, 11th ed. (Clin. Labor. Standards Inst., 2012), Vol. 32.
  56. M. Balouiri, M. Sadiki, and S. K. Ibnsouda, J. Pharm. Anal. 6, 71 (2016).
  57. A. W. Bauer, W. M. Kirby, J. C. Sherris, and M. Turck, Am. J. Clin. Pathol., 493 (1966).
  58. P. R. Murray et al., Manual of Clinical Microbiology, 9th ed. (ASM Press, Washington, 2007).
  59. J. G. W. C. Cappuccino, Microbiology: A Laboratory Manual, 12th ed. (Pearson/Benjamin Cummings, San Francisco, 2019), p. 561.
  60. X. Zheng, M. Huang, Y. You, et al., Mater. Res. Bull. 101, 20 (2018).
  61. A. Krishnan, S. Beena, and M. Chandran, Mater. Today Proc. 18, 4968 (2019).
  62. S. M. A. Shibli, L. Thushara, and S. R. Archana, Int. J. Hydrogen Energy 42, 1919 (2017).
  63. S. Das et al., Int. J. Environ. Res. Public Health 15, (2018).
  64. F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Seró, and J. Bisquert, Phys. Chem. Chem. Phys. 13, 9083 (2011).
  65. P. Reshma and K. Ashwini, J. Nanomater. Mol. Nanotechnol., No. 06 (2017).