Статья
2022

Layer-by-Layer Formation of the NiO/CGO Composite Anode for SOFC by 3D Inkjet Printing Combined with Laser Treatment


A. S. Bagishev A. S. Bagishev , I. M. Mal’bakhova I. M. Mal’bakhova , A. M. Vorob’ev A. M. Vorob’ev , T. A. Borisenko T. A. Borisenko , A. D. Asmed’yanova A. D. Asmed’yanova , A. I. Titkov A. I. Titkov , A. P. Nemudryi A. P. Nemudryi
Российский электрохимический журнал
https://doi.org/10.1134/S1023193522070047
Abstract / Full Text

A composition of the paste used in printing SOFC anodes is developed on the basis of nanosized nickel oxide and gadolinia-stabilized ceria with the aim of 3D inkjet printing followed by laser and thermal sintering. The parameters of the anode paste such as the size distribution of particles and the viscosity are determined. A SOFC anode sample is printed by means of a laboratory 3D printer equipped with a metering system for inkjet printing and also by a module for laser treatment. Experiments are carried out on printing three-dimensional test objects with the use of the developed ceramic paste. These samples are studied by a complex of physicochemical methods for determination of morphological and structural characteristics.

Author information
  • Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

    A. S. Bagishev, I. M. Mal’bakhova, A. M. Vorob’ev, T. A. Borisenko, A. D. Asmed’yanova, A. I. Titkov & A. P. Nemudryi

  • Novosibirsk State University, Novosibirsk, Russia

    A. D. Asmed’yanova

References
  1. Tai, X.Y., Zhakeyev, A., Wang, H., Jiao, K., Zhang, H., and Xuan, J., Accelerating fuel cell development with additive manufacturing technologies: State of the art, opportunities and challenges, Fuel Cells, 2019, vol. 19, no. 6, p. 636.
  2. Wei, L., Zhang, J., Yu, F., Zhang, W., Meng, X., Yang, N., and Liu, S., A novel fabrication of yttria-stabilized-zirconia dense electrolyte for solid oxide fuel cells by 3D printing technique, Int. J. Hydrogen Energy, 2019, vol. 44, no. 12, p. 6182.
  3. Eickenscheidt, M., Langenmair, M., Dbouk, A., Nötzel, D., Hanemann, T., and Stieglitz, T., 3D-printed hermetic alumina housings, Materials, 2021, vol. 14, no. 1, p. 636.
  4. Shahzad, A. and Lazoglu, I., Direct ink writing (DIW) of structural and functional ceramics: Recent achievements and future challenges, Composites, Part B, 2021, vol. 225, p. 109249.
  5. Derby, B., Additive manufacture of ceramics components by inkjet printing, Engineering, 2015, vol. 1, no. 1, p. 113.
  6. Chen, Z., Sun, X., Shang, Y., Xiong, K., Xu, Z., Guo, R., Cai, S., and Zheng, C., Dense ceramics with complex shape fabricated by 3D printing: A review, J. Adv. Ceram., 2021, vol. 10, p. 195.
  7. Lomberg, M., Boldrin, P., Tariq, F., Offer, G., Wu, B., and Brandon, N., Additive manufacturing for solid oxide cell electrode fabrication, ECS Trans., 2015, vol. 68, no. 1, p. 2119.
  8. Buccheri, M., Singh, A., and Hill, J.M., Anode versus electrolyte-supported Ni–YSZ/YSZ/Pt SOFCs: Effect of cell design on OCV, performance and carbon formation for the direct utilization of dry methane, J. Power Sources, 2011, vol. 196, no. 3, p. 968.
  9. Steele, B.C.H., Appraisal of Ce1 – yGdyO2 – y/2 electrolytes for IT-SOFC operation at 500°C, Solid State Ionics, 2000, vol. 129, nos. 1–4, p. 95.
  10. Gunduz, I.E., McClain, M.S., Cattani, P., Chiu, G.T.-C., Rhoads, J.F., and Son, S.F., 3D printing of extremely viscous materials using ultrasonic vibrations, Addit. Manuf., 2018, vol. 22, p. 98.
  11. Song, C., Lee, S., Gu, B., Chang, I., Cho, G.Y., Baek, J.D., and Cha, S.W., A Study of anode-supported solid oxide fuel cell modeling and optimization using neural network and multi-armed bandit algorithm, Energies, 2020, vol. 13, no. 7, p. 1621.