Статья
2022

Determination of Propranolol at a Carbon Paste Electrode Modified with Magnetite–Graphene Oxide in Combination with Presence of Sodium Dodecyl Sulfate


 Hediyeh Bagheri Ladmakhi Hediyeh Bagheri Ladmakhi , Shahla Fathi Shahla Fathi , Fereshteh Chekin Fereshteh Chekin , Jahan Bakhsh Raoof Jahan Bakhsh Raoof
Российский электрохимический журнал
https://doi.org/10.1134/S1023193522030065
Abstract / Full Text

In this study, a new electrochemical sensor based on magnetite graphene oxide/modified carbon paste electrode (Fe3O4–GO/CPE) was applied for determination of a cardiovascular drug, propranolol (PRO) in solution containing sodium dodecyl sulfate (SDS) as a surfactant. Results show that combination of modified electrode with surfactant addition, considerably increased electroanalytical signal for PRO determination and resulted to sensitive detection of PRO with linear range of 10–1500 μM, limit of detection of 4.5 μM and sensitivity of 166 µA mM–1. Applicability of this analytical method for detection of PRO in pharmaceutical formulations was studied and acceptable results obtained.

Author information
  • Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

    Hediyeh Bagheri Ladmakhi, Shahla Fathi & Fereshteh Chekin

  • Electroanalytical Chemistry Research Laboratory, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran

    Jahan Bakhsh Raoof

References
  1. Hardman, J.G., Limbird, L.E., and Gilman, A.G., The Pharmacological Basis of Therapeutics, 9th ed., New York: McGraw-Hill, 1996.
  2. Imam, S.S., Ahad, A., Aqil, M., Sultana, Y., and Ali, A., A validated RP-HPLC method for simultaneous determination of propranolol and valsartan in bulk drug and gel formulation, J. Pharm. Bioallied. Sci., 2013, vol. 5, p. 61.
  3. WADA 2021, List of Prohibited Substances and Methods, 2021. http://www.wada-ama.org.
  4. Idowu, O.S., Adegoke, O.A., and Olaniyi, A.A., Colorimetric assay of propranolol tablets by derivatization: novel application of diazotized 4-amino-3,5-dinitrobenzoic acid (ADBA), J. AOAC. Int., 2004, vol. 87, p. 573.
  5. Salem, H., Spectrophotometric determination of β-adrenergic blocking agents in pharmaceutical formulations, J. Pharm. Biomed. Anal., 2002, vol. 29, p. 527.
  6. Tsogas, G.Z., Stergiou, D.V., Vlessidis, A.G., and Evmiridis, N.P., Development of a sensitive flow injection-chemiluminescence detection method for the indirect determination of propranolol, Anal. Chim. Acta, 2005, vol. 541, p. 149.
  7. Ramesh, K.C., Gowda, B.G., Seetharamappa, J., and Keshavayya, J., Indirect spectrofluorimetric determination of piroxicam and propranolol hydrochloride in bulk and pharmaceutical preparations, J. Anal. Chem., 2003, vol. 58, p. 933.
  8. Tabrizi, A.B., A simple spectrofluorimetric method for determination of piroxicam and propranolol in pharmaceutical preparation, J. Food. Drug. Anal., 2007, vol. 15, p. 242.
  9. Bai, J., Ndamanisha, J.C., Liu, L., Yang, L., and Guo, L.P., Voltammetric detection of riboflavin based on ordered mesoporous carbon modified electrode, J. Solid State Electrochem., 2010, vol. 14, p. 2251.
  10. El-Sayed, M.A., Barary, M.H., Abdel Salam, M., and Mohmad, S.M., Spectrophotometric assay of certain cardiovascular drugs through charge transfer reactions, Anal. Lett., 1989, vol. 22, p. 1665.
  11. Raman, K. and Agrawal, Y.K., Colorimetric determination of propranolol hydrochloride, Indian J. Pharm. Sci., 1989, vol. 51, p. 144.
  12. Gowda, B.G., Seetharamappa, J., and Melwanki, M.B., Indirect spectrophotometric determination of propranolol hydrochloride and piroxicam in pure and pharmaceutical formulations, Anal. Sci., 2002, vol. 18, p. 671.
  13. Rudnicki, K., Brycht, M., Leniart, A., Domagala, S., Kaczmarek, K., Kalcher, K., and Skrzypek, S., A sensitive sensor based on single-walled carbon nanotubes: its preparation, characterization and application in the electrochemical determination of drug clorsulon in milk samples, Electroanalysis, 2020, vol. 32, p. 375.
  14. Khoobi, A., Attaran, A.M., Yousofi, M., and Enhessari, M., A sensitive lead titanate nano-structured sensor for electrochemical determination of pentoxifylline drug in real samples, J. Nanostruct. Chem., 2019, vol. 9, p. 29.
  15. Zabihollahpoor, A., Rahimnejad, M., Najafpour, G., and Moghadamnia, A.A., Gold nanoparticle prepared by electrochemical deposition for electrochemical determination of gabapentin as an antiepileptic drug, J. Electroanal. Chem., 2019, vol. 835, p. 281.
  16. Rani, G.J., Babu, K.J. Kumar, G.G., and Rajan, M.J., Watsonia meriana flower like Fe3O4/reduced graphene oxide nanocomposite for the highly sensitive and selective electrochemical sensing of dopamine, J. Alloys Compd., 2016, vol. 688, p. 500.
  17. Batool, R., Akhtar, M.A., Hayat, A., Han, D., Niu, L., Ashfaq Ahmad, M., and Hasnain Nawaz, M., A nanocomposite prepared from magnetite nanoparticles, polyaniline and carboxy-modified graphene oxide for non-enzymatic sensing of glucose, Microchim. Acta, 2019, vol. 186, p. 267.
  18. Aliyev, E., Filiz, V., Khan, M.M., Lee, Y.J., Abetz, C., and Abetz, V., Structural characterization of graphene oxide: surface functional groups and fractionated oxidative debris, Nanomaterials, 2019, vol. 9, p. 1180.
  19. Feicht, P. and Eigler, S., Defects in graphene oxide as structural motifs, Chem. Nano Mat., 2018, vol. 4, p. 244.
  20. Digua, K., Kauffmann, J.M., and Delplancke, J.L., Surfactant modified carbon paste electrode. Part 1: electrochemical and microscopic characterization, Electroanalysis, 1994, vol. 6, p. 451.
  21. Digua, K., Kauffmann, J.M., and Khodari, M., Surfactant modified carbon paste electrode. Part 2: analytical performances, Electroanalysis, 1994, vol. 6, p. 459.
  22. Ahmadi Diva, A., Fathi, Sh., and Chekin, F., Determination of fluvoxamine in real samples using carbon paste electrode modified by electrodeposition of nickel, J. Anal. Chem., 2019, vol. 74, p. 809.
  23. Fathi, Sh., A novel and low cost electrochemical sensor for ceftazidime and cefazoline as antibiotic drugs based on nickel/SDS-poly(o-aminophenol) modified electrode, Russ. J. Electrochem., 2014, vol. 50, p. 468.
  24. Fathi, Sh. and Mahdavi, M.R., Electropolymerization of N,N-dimethylaniline in presence of sodium dodecyl sulfate and its electrochemical properties, Russ. J. Electrochem., 2014, vol. 50, p. 1077.
  25. Bagheri Ladmakhi, H., Chekin, F., Fathi, Sh., and Raoof, J.B., Electrochemical sensor based on magnetite graphene oxide/ordered mesoporous carbon hybrid to detection of allopurinol in clinical samples, Talanta, 2020, vol. 221, p. 120759.
  26. ANVISA (2010). Brazilian Pharmacopoeia, 5th ed., Brasil: ANVISA, 2010, vol. 2.
  27. Ma, X., Chao, M., and Wang, Z., Electrochemical determination of Sudan I in food samples at graphene modified glassy carbon electrode based on the enhancement effect of sodium dodecyl sulphonate, Food Chem., 2013, vol. 138, p. 739.
  28. Wang, X. and Fan, Y., Electrochemical determination of phloroglucinol using a carbon nanotube modified electrode enhanced by surfactant, J. Appl. Electrochem., 2009, vol. 39, p. 1451.
  29. Sartori, E.R., Medeiros, R.A., Rocha, R.C., and Fatibello-Filho, O., Square-wave voltammetric determination of propranolol and atenolol in pharmaceuticals using a boron-doped diamond electrode, Talanta, 2010, vol. 81, p. 1418.
  30. Santos, S.X.D. and Cavalheiro, E.T.G., The potentialities of using a graphite-silicone rubber composite electrode in the determination of propranolol, Anal. Lett., 2011, vol. 44, p. 850.
  31. Hedge, R.N., Kumara Swamy, B.E., Sherigara, B.S., and Nandibewoor, S.T., Electro-oxidation of atenolol at a glassy carbon electrode, Int. J. Electrochem. Sci., 2008, vol. 3, p. 302.
  32. Araujo, D.A.G., Pradela-Filho, L.A., Santos, A.L.R., Faria, A.M., Takeuchi, R.M., Karimi-Maleh, H., and Santos, A.L., Uncured polydimethylsiloxane as binder agent for carbon paste electrodes: application to the quantification of propranolol, J. Braz. Chem. Soc., 2019, vol. 30, p. 1988.
  33. Cervini, P., Ramos, L.A., and Cavalheiro, E.T.G., Determination of atenolol at a graphite-polyurethane composite electrode, Talanta, 2007, vol. 72, p. 206.
  34. Moffat, A.C., Clarke’s Isolation and Identification of Drugs, London: The Pharmaceutical Press, 1986.
  35. Curry, S.H., in Martindale: the Extra Pharmacopoeia, Reynolds, J.E.F., Ed., 31st ed., London: Royal Pharm. Soc., 1996.
  36. Van Os, N.M., Haak, J.R., and Rupert, L.A.M., Physico-Chemical Properties of Selected Anionic, Cationic and Nonionic Surfactants, Elsevier Sci., 1993.
  37. Oliveira, G.G., Vicentini, F.C., Azzi, D.C., Sartori, E.R., and Fatibello-Filho, O., Voltammetric determination of verapamil and propranolol using a glassy carbon electrode modified with functionalized multiwalled carbon nanotubes within a poly (allylamine hydrochloride) film, J. Electroanal. Chem., 2013, vol. 708, p. 73.
  38. Gaichore, R.R. and Srivastava, A.K., Electrocatalytic determination of propranolol hydrochloride at carbon paste electrode based on multiwalled carbon-nanotubes and γ-cyclodextrin, J. Inclusion Phenom. Macrocyclic Chem., 2014, vol. 78, p. 195.
  39. Wong, A., Santos, A.M., Silva, T.A., and Fatibello-Filho, O., Simultaneous determination of isoproterenol, acetaminophen, folic acid, propranolol and caffeine using a sensor platform based on carbon black, graphene oxide, copper nanoparticles and PEDOT: PSS, Talanta, 2018, vol. 183, p. 329.