Статья
2018

Study of the Process of Reversible Insertion of Lithium into Nanostructured Materials Based on Germanium


I. M. Gavrilin I. M. Gavrilin , V. A. Smolyaninov V. A. Smolyaninov , A. A. Dronov A. A. Dronov , S. A. Gavrilov S. A. Gavrilov , A. Yu. Trifonov A. Yu. Trifonov , T. L. Kulova T. L. Kulova , A. A. Kuz’mina A. A. Kuz’mina , A. M. Skundin A. M. Skundin
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518120054
Abstract / Full Text

Nanostructured germanium samples prepared by electrochemical deposition from aqueous solution of 0.05 М germanium oxide onto titanium substrate are tested as the negative electrodes of lithium-ion batteries. The reversible capacity in the process of lithium insertion-extraction is found to be about 1180 mA h/g, which corresponds to the formation of Li3.05Ge alloy. The effective diffusion coefficient of lithium in germanium is shown to be 1.2 × 10–11 cm2/s. The degradation of the germanium electrode upon cycling at 0.6 С rate is less than 0.3% per cycle.

Author information
  • National Research University of Electronic Technology, Zelenograd, Moscow oblast, 124498, Russia

    I. M. Gavrilin, V. A. Smolyaninov, A. A. Dronov, S. A. Gavrilov & A. Yu. Trifonov

  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia

    T. L. Kulova, A. A. Kuz’mina & A. M. Skundin

  • Lukin Research Institute of Physical Problems, Zelenograd, Moscow oblast, 124498, Russia

    A. Yu. Trifonov

References
  1. Goriparti, S., Miele, E., Angelis, F.D., Fabrizio, E.D., Zaccaria, R.P., and Capiglia, C., Review on recent progress of nanostructured anode materials for Li-ion batteries. Review article, J. Power Sources, 2014, vol. 257, p.421.
  2. Hansen, M. and Anderko, K., Constitution of Binary Alloys. 2nd ed., Toronto: McGraw-Hill, 1958.
  3. Wu, S., Han, C., Iocozzia, J., Lu, M., Ge, R., Xu, R., and Lin, Z., Germanium-based nanomaterials for rechargeable batteries, Angew. Chem., Int. Ed., 2016, vol. 55, p. 7898.
  4. Kennedy, T., Brandon, M., and Ryan, K.M., Advances in the application of silicon and germanium nanowires for high-performance lithium-ion batteries, Adv. Mater., 2016, vol. 28, no. 27, p. 5696.
  5. Schmidt, V. and Gösele, U., How nanowires grow, Science, 2007, vol. 316, p. 698.
  6. Carim, A. I., Collins, S.M., Foley, J.M., and Maldonado, S., Benchtop electrochemical liquid–liquid–solid growth of nanostructured crystalline germanium, J. Amer. Chem. Soc., 2011, vol. 133, p. 13292.
  7. Fahrenkrug, E., Gu, J., Jeon, S., Veneman, P.A., Goldman, R.S., and Maldonado, S., Room-temperature epitaxial electrodeposition of single-crystalline germanium nanowires at the wafer scale from an aqueous solution, Nano Lett., 2014, vol. 14, p. 847.
  8. Ma, L., Fahrenkrug, E., Gerber, E., Crowe, A. J., Venable, F., Bartlett, B. M., and Maldonado, S., High-performance polycrystalline Ge microwire film anodes for Li ion batteries, ACS Energy Lett., 2016, vol. 2, p. 238.
  9. Gu, J., Collins, S.M., Carim, A.I., Hao, X., Bartlett, B.M., and Maldonado, S., Template-free preparation of crystalline Ge nanowire film electrodes via an electrochemical liquid–liquid–solid process in water at ambient pressure and temperature for energy storage, Nano Lett., 2012, vol. 12, p. 4617.
  10. Gromov, D.G., Pavlova, L.M., Savitskii, A.I., and Trifonov, A.Yu., Investigation of the early stages of condensation of Ag and Au on the amorphous carbon surface during thermal evaporation under vacuum, Phys. Solid State, 2015, vol. 57, p. 173.
  11. Mahenderkar, N.K., Liu, Y.-C., Koza, J.A., and Switzer, J.A., Electrodeposited germanium nanowires, ACS Nano, 2014, vol. 8, p. 9524.
  12. Kulova, T.L., Mironenko, A.A., Skundin, A.M., Rudy, A.S., Naumov, V.V., and Pukhov, D.E., Study of silicon composite for negative electrode of lithium-ion battery, Int. J. Electrochem. Sci., 2016, vol. 11, p. 1370.
  13. Lee, G.H., Shim, H.W., and Kimn, D.W., Superior long-life and high-rate Ge nanoarrays anchored on Cu/C nanowire frameworks for Li-ion battery electrodes, Nano Energy, 2015, vol. 13, p. 218.
  14. Guo, W., Mei, L., Feng, Q., and Ma, J., Facile synthesis of Ge/C nanocomposite as superior battery anode material, Mater. Chem. Phys., 2015, vol. 168, p. 6.
  15. Rudawski, N.G., Yates, B.R., Holzworth, M.R., Jones, K.S., Elliman, R.G., and Volinsky, A.A., Ion beam-mixed Ge electrodes for high capacity Li rechargeable batteries, J. Power Sources, 2013, vol. 223, p. 336.
  16. Al-Obeidi, A., Kramer, D., Thompson, C.V., and Monig, R., Mechanical stresses and morphology evolution in germanium thin film electrodes during lithiation and delithiation, J. Power Sources, 2015, vol. 297, p. 472.
  17. Laforge, B., Levan-Jodin, L., Salot, R., and Billard, A., Study of germanium as electrode in thin-film battery, J. Electrochem. Soc., 2008, vol. 155, p. A181.
  18. Ozanam, F., and Rosso, M., Silicon as anode material for Li-ion batteries, Mater. Sci. Eng. B, 2016, vol. 213, p. 2.