Examples



mdbootstrap.com



 
Статья
2020

Reaction of Cyclometalated Phosphine Chloride Iridium(III) Complexes with Imidazole


S. A. ChapaikinaS. A. Chapaikina, A. I. SolomatinaA. I. Solomatina, S. P. TunikS. P. Tunik
Российский журнал общей химии
https://doi.org/10.1134/S1070363220060110
Abstract / Full Text

A series of iridium complexes with various cyclometalated ligands and phosphines [Ir(N^C)2(PR3)Cl], where N^C = 2-(benzothiophen-3-yl)pyridine and 2-phenylpyridine and R = phenyl and p-methoxyphenyl, were obtained. It was shown that the complexes of this type react with imidazole under mild conditions. The phosphine and chloride ligands are consecutively substituted to give imidazole-containing derivatives. The photophysical properties of all the synthesized compounds were investigated in detail. The imidazole-containing complexes demonstrate efficient triplet luminescence in solution with quantum yields up to 60%, which is sensitive to molecular oxygen.

Author information
  • St. Petersburg State University, 199034, St. Petersburg, RussiaS. A. Chapaikina, A. I. Solomatina & S. P. Tunik
References
  1. Connell, T.U. and Donnelly, P.S., Coord. Chem. Rev., 2018, vol. 375, p. 267. https://doi.org/10.1016/j.ccr.2017.12.001
  2. Gonçalves, M.S.T., Chem. Rev., 2009, vol. 109, no. 1, p. 190. https://doi.org/10.1021/cr0783840
  3. Zhao, Q., Huang, C., and Li, F., Chem. Soc. Rev., 2011, vol. 40, no. 5, p. 2508. https://doi.org/10.1039/c0cs00114g
  4. Hermanson, G.T., Bioconjugate Techniques, London: Elsevier, 2013, p. 229. https://doi.org/10.1016/B978-0-12-382239-0.00003-0
  5. Hoyt, E.A., Cal, P.M.S.D., Oliveira, B.L., and Bernardes, G.J.L., Nat. Rev. Chem., 2019, vol. 3, no. 3, p. 147. https://doi.org/10.1038/s41570-019-0079-1
  6. Nwe, K. and Brechbiel, M.W., Cancer Biother. Radiopharm., 2009, vol. 24, no. 3, p. 289. https://doi.org/10.1089/cbr.2008.0626
  7. Lo, K.K.-W., Choi, A.W.-T., and Law, W.H.-T., Dalton Trans., 2012, vol. 41, no. 20, p. 6021. https://doi.org/10.1039/c2dt11892k
  8. Ma, D.-L., Wong, W.-L., Chung, W.-H., Chan, F.-Y., So, P.-K., Lai, T.-S., Zhou, Z.-Y., Leung, Y.-C., and Wong, K.-Y., Angew. Chem. Int. Ed., 2008, vol. 47, no. 20, p. 3735. https://doi.org/10.1002/anie.200705319
  9. Ma, X., Jia, J., Cao, R., Wang, X., and Fei, H., J. Am. Chem. Soc., 2014, vol. 136, no. 51, p. 17734. https://doi.org/10.1021/ja511656q.
  10. Wang, X., Jia, J., Huang, Z., Zhou, M., and Fei, H., Chem. Eur. J., 2011, vol. 17, no. 29, p. 8028. https://doi.org/10.1002/chem.201100568
  11. Solomatina, A.I., Chelushkin, P.S., Krupenya, D.V., Podkorytov, I.S., Artamonova, T.O., Sizov, V.V., Melnikov, A.S., Gurzhiy, V. V., Koshel, E.I., Shcheslavskiy, V.I., and Tunik, S.P., Bioconjug. Chem., 2017, vol. 28, no. 2, p. 426. https://doi.org/10.1021/acs.bioconjchem.6b00598
  12. Solomatina, A.I., Chelushkin, P.S., Abakumova, T.O., Zhemkov, V.A., Kim, M., Bezprozvanny, I., Gurzhiy, V.V., Melnikov, A.S., Anufrikov, Y.A., Koshevoy, I.O., Su, S.-H., Chou, P.-T., and Tunik, S.P., Inorg. Chem., 2019, vol. 58, no. 1, p. 204. https://doi.org/10.1021/acs.inorgchem.8b02204
  13. Wang, Y., Teng, F., Tang, A., Wang, Y., and Xu, X., Acta Crystallogr. Sect. E, 2005, vol. 61, no. 4, p. 778. https://doi.org/10.1107/S1600536805008913
  14. Wang, Y.M., Teng, F., Gan, L.H., Liu, H.M., Zhang, X.H., Fu, W., Wang, Y.S., and Xu, X.R., J. Phys. Chem. C, 2008, vol. 112, no. 12, p. 4743. https://doi.org/10.1021/jp076669a
  15. Chen, Z.Q., Shen, X., Xu, J.X., Zou, H., Wang, X., Xu, Y., and Zhu, D.R., Inorg. Chem. Commun., 2015, vol. 61, p. 152. https://doi.org/10.1016/j.inoche.2015.09.013
  16. Zhang, X., Zhang, L.Y., Shi, L.X., and Chen, Z.N., Inorg. Chem. Commun., 2009, vol. 12, no. 8, p. 758. https://doi.org/10.1016/j.inoche.2009.06.008
  17. Flamigni, L., Barbieri, A., Sabatini, C., Ventura, B., and Barigelletti, F., Top. Curr. Chem., 2007, vol. 281, p. 143. https://doi.org/10.1007/128_2007_131
  18. Huckaba, A.J. and Nazeeruddin, M.K., Comm. Inorg. Chem., 2017, vol. 37, no. 3, p. 117. https://doi.org/10.1080/02603594.2016.1207064
  19. Wu, N., Cao, J.J., Wu, X.W., Tan, C.P., Ji, L.N., and Mao, Z.W., Dalton Trans., 2017, vol. 46, no. 39, p. 13482. https://doi.org/10.1039/c7dt02477k
  20. Armarego, W.L.F. and Chai, C.L.L., Purification of Laboratory Chemicals, Oxford: Elsevier, 2009, p. 88. https://doi.org/10.1016/B978-1-85617-567-8.50012-3
  21. Nonoyama, M., Bull. Chem. Soc. Jpn., 1974, vol. 47, no. 3, p. 767. https://doi.org/10.1246/bcsj.47.767
  22. Brouwer, A.M., Pure Appl. Chem., 2011, vol. 83, no. 12, p. 2213. https://doi.org/10.1351/PAC-REP-10-09-31
  23. Suzuki, K., Kobayashi, A., Kaneko, S., Takehira, K., Yoshihara, T., Ishida, H., Shiina, Y., Oishi, S., and Tobita, S., Phys. Chem. Chem. Phys., 2009, vol. 11, no. 42, p. 9850. https://doi.org/10.1039/b912178a
  24. LeBel, R.G. and Goring, D.A.I., J. Chem. Eng. Data, 1962, vol. 7, no. 1, p. 100. https://doi.org/10.1021/je60012a032
  25. CrysAlisPro, Rigaku Oxford Diffraction, Version: 1.171.39.35a, 2017.
  26. Sheldrick, G.M., Acta Crystallogr., Sect. A, 2015, vol. 71, no. 1, p. 3. https://doi.org/10.1107/S2053273314026370
  27. Sheldrick, G.M., Acta Crystallogr., Sect. C, 2015, vol. 71, no. 1, p. 3. https://doi.org/10.1107/S2053229614024218.
  28. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Crystallogr., 2009, vol. 42, no. 2, p. 339. https://doi.org/10.1107/S0021889808042726
  29. Spek, A.L., Acta Crystallogr., Sect. C, 2015, vol. 71, no. 1, p. 9. https://doi.org/10.1107/S2053229614024929