Stability against Degradation and Activity of Catalysts with Different Platinum Load Synthesized at Carbon Nanotubes

V. A. BogdanovskayaV. A. Bogdanovskaya, A. V. KuzovA. V. Kuzov, M. V. RadinaM. V. Radina, V. Ya. FilimonovV. Ya. Filimonov, G. M. SudarevG. M. Sudarev, M. A. OsinaM. A. Osina
Российский электрохимический журнал
Abstract / Full Text

Platinum catalysts synthesized at carbon nanotubes with the noble metal content of 20 and 40 wt % are studied under model conditions and in cathodes of membrane-electrode assemblies (MEA) of hydrogen–air fuel cells with proton-conducting polymer electrolyte. The effect of the cathode active layer and MEA overall composition on the activity and operation stability of the synthesized catalytic systems is elucidated. Stability against degradation is studied by using the accelerated stress-testing method by the cathode potential repeated cycling over the 0.6–1.3 V range. The synthesized catalysts were shown to possess higher stability against degradation as compared to the commercial 60Pt/C catalysts (HiSPEC). Contribution of the electrochemical, Ohmic, and transport components into the overall voltage losses depends on the total platinum surface area in the active layers, which determines the polarization current density, and on the Pt mass at the support. The higher Ohmic and transport losses in the case of the catalyst with the Pt content of 40 wt %, as compared to the catalyst containing 20 wt % of platinum, are due to the structural characteristics, namely, a decrease in the carbon nanotubes’ pore volume and size when a greater metal load is applied.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, RussiaV. A. Bogdanovskaya, A. V. Kuzov, M. V. Radina & V. Ya. Filimonov
  • National Research University “Moscow Power Engineering Institute”, 111250, Moscow, RussiaG. M. Sudarev & M. A. Osina
  1. Tarasevich, M.R., Bogdanovskaya, V.A., Gavrilov, Yu.G., Zhutaeva, G.V., Kazanskii, L.P., Kol’tsova, E.M., Kuzov, A.B., Lozovaya, O.V., Modestov, A.D., Radina, M.V., and Filimonov, V.Ya., PtCoCr Catalysts for Fuel Cell Cathodes: Electrochemical Activity, Pt Content, Substrate Nature, Structure and Corrosion Properties, Protection Metals Phys. Chem. Surface, 2013, vol. 49, p. 125.
  2. Tarasevich, M.R., Bogdanovskaya, V.A., and Andreev, V.N., Modern electrocatalysts for fuel cells with a proton-conductive polymeric electrolyte, Kataliz v promyshlennosti (in Russian), 2014, no. 2, p. 16.
  3. Maniwan, W., Poochinda, K., and Hunsom, M., Activity and stability of PtxCr/C catalyst for oxygen reduction reaction: Effect of the Pt : Cr ratio and heat treatment atmosphere, International J. Hydrogen Energy, 2016, vol. 41, p. 21404.
  4. Groger, O., Gasteiger, H.A., and Suchsland, J.-P., Review—Electromobility: Batteries or Fuel Cells?, J. Electrochem. Soc., 2015, vol. 162, p. A2605.
  5. Sorsa, O., Romar, H., Lassi, U., and Kallio, T., Co-electrodeposited Mesoporous PtM (M = Co, Ni, Cu) as an Active Catalyst for Oxygen Reduction Reaction in a Polymer Electrolyte Membrane Fuel Cell, Electrochim. Acta, 2017, vol. 230, p. 49.
  6. Long, N.V., Yang, Y., Thi, C.M., Minh, N.V., Cao, Y., and Nogami, M., The development of mixture, alloy, and core–shell nanocatalysts with nanomaterial supports for energy conversion in low-temperature fuel cells, Nano Energy, 2013, vol. 2, p. 636.
  7. Stassi, A., Gatto, I., Monforte, G., Baglio, V., Passalacqua, E., Antonucci, V., and Arico, A.S., The effect of thermal treatment on structure and surface composition of PtCo electro-catalysts for application in PEMFCs operating under automotive conditions, J. Power Sources, 2012, vol. 208, p. 35.
  8. Wang, K.-C., Huang, H.-C., and Wang C.-H., Synthesis of Pd@Pt3Co/C core–shell structure as catalyst for oxygen reduction reaction in proton exchange membrane fuel cell, Int. J. Hydrogen Energy, 2017, vol. 42, p. 11771.
  9. Bogdanovskaya, V.A., Krasilnikova, O.K., Kuzov, A.V., Radina, M.V., Tarasevich, M.R., Avakov, V.B., Kapustin, A.V., and Landgraf, I.K., Electrochemical and structure characteristics of PtCoCr/C—catalyst with platinum content 50 wt % and cathode on its basis for fuel cell with proton-conducting polymer electrolyte, Russ. J. Electrochem., 2015, vol. 51, p. 602.
  10. Tarasevich, M.R., Bogdanovskaya, V.A., Lozovaya, O.V., Maleeva, E.A., and Kol’tsova, E.M., New carriers: carbon nanotubes, titanium oxide, graphene like materials and catalysts for fuel cells on their basis, Al’ternativnaya Energetika i Ekologiya (in Russian), 2012, no. 01(105), p. 82.
  11. Bogdanovskaya, V.A., Radina, M.V., and Lozovaya, O.V., Carbon nanotubes—perspectiv carrier for a synthesis of cathodic catalysts PtCoCr, Al’ternativnaya Energetika i Ekologiya (in Russian), 2012, no. 2(106), p. 91.
  12. Stamatin, S.N., Borghei, M., Dhiman, R., Andersen, S.M., Ruiz, V., Kauppinen, E., and Skou, E.M., Activity and stability studies of platinized multi-walled carbon nanotubes as fuel cell electrocatalysts, Appl. Catal. B: Environmental, 2015, vol. 162, p. 289.
  13. Antolini, E., Carbon supports for low-temperature fuel cell catalysts, Appl. Catal. B: Environmental, 2009, vol. 88, p. 1.
  14. Martínez-Huerta, M.V. and Lázaro, M.J., Electrocatalysts for low temperature fuel cells, Catalysis Today, 2017, vol. 285, p. 3.
  15. Zhang, Wei and Silva, Ravi P., Application of carbon nanotubes in polymer electrolyte based fuel cells, Rev. Adv. Mater. Sci., 2011, vol. 29, p. 1.
  16. Ivan’shin, O.Yu., Tamm, M.E., Gerasimova, E.V., Kochugaeva, M.P., Kirikova, M.N., Savilov, S.V., and Yashina, L.V., Synthesis and electrocatalytical activity of composites platinum nanoparticals/carbon nanotubes. Neorganicheskie materials (in Russian), 2011, vol. 47, no. 6, p. 694.
  17. Mezalira, D.Z. and Bron, M., High stability of low Pt loading high surface area electrocatalysts supported on functionalized carbon nanotubes, J. Power Sources, 2013, vol. 231, p. 113.
  18. Bharti, A. and Cheruvally, G., Influence of various carbon nano-forms as supports for Pt catalyst on proton exchange membrane fuel cell performance, J. Power Sources, 2017, vol. 360, p. 196.
  19. Yaragalla, S., Anilkumar, G., Kalarikkal, N., and Thomas, S., Structural and optical properties of functionalized multi-walled carbon nanotubes, Materials Science in Semiconductor Processing, 2016, vol. 41, p. 491.
  20. Melchionna, M., Marchesan, S., Prato, M., and Fornasiero, P., Carbon nanotubes and catalysis: the many facets of a successful marriage, Catalysis Science & Technology, 2015, vol. 5, p. 3859.
  21. Sahoo, M., Scott, K., and Ramaprabhu, S., Platinum decorated on partially exfoliated multiwalled carbon nanotubes as high performance cathode catalyst for PEMFC, Int. J. Hydrog. Energy, 2015, vol. 40, p. 9435.
  22. Punetha, V.D., Rana, S., Yoo, H. J., Chaurasia, A., McLeskey, Jr. J. T., Ramasamy, M. S., Sahoo, N.G., and Choc, J.W., Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene Vinay, Progress Polymer Sci., 2017, vol. 67, p. 1.
  23. Bogdanovskaya, V.A., Kol’tsova, E.M., Tarasevich, M.R., Radina, M.V., Zhutaeva, G.V., Kuzov, A.V., and Gavrilova, N.N., Highly active and stable catalysts based on nanotubes and modified platinum for fuel cells, Russ. J. Electrochem., 2016, vol. 52, p. 723.
  24. Ginzburg, S.I., Ezerskaya, N.A., Prokof’eva, I.V., Fedorenko, N.V., Shlenskaya, V.I., and Bel’skii, N.K., Analytical Chemistry of Platinum Metals (in Russian), Moscow: Nauka, 1972, 309 p.
  25. Gasteiger, H.A., Kocha, S.S., Sompalli, B., and Wagner, F.T., Activity Benchmarks and Requirements for Pt, Pt-Alloy, and Non-Pt Oxygen Reduction Catalysts for PEMFCs, Appl. Catal. B: Environmental, 2005, vol. 56, no. 1, p. 9.
  26. Bogdanovskaya, V.A., Tarasevich, M.R., and Lozovaya, O.V., Kinetics and mechanism of oxygen electroreduction on catalyst containing 20–40 wt % platinum PtCoCr/C, Russ. J. Electrochem., 2011, vol. 47, p. 845.
  27. Avakov, V.B., Aliev, A.D., Beketaeva, L.A., Bogdanov-skaya, V.A., Burkovskii, E.V., Datskevich, A.A., Ivanitskii, B.A., Kazanskii, L.P., Kapustin, A.V., Korchagin, O.V., Kuzov, A.V., Landgraf, I.K., Lozovaya, O.V., Modestov, A.D., Stankevich, M.M., Tarasevich, M.R., and Chalykh, A.E., Study of degradation of membrane-electrode assemblies of hydrogen-oxygen (air) fuel cell under the conditions of life tests and voltage cycling, Russ. J. Electrochem., 2014, vol. 50, p.773.
  28. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, Academic, 1982.
  29. Dubinin, M.M., Chemistry and Physics of Carbon, New York.: Marcel Dekker, 1966, vol. 2, p. 51.
  30. Voloshchuk, A.M., Dubinin, M.M., Moskovskaya, T.A., Ivakhnyuk, G.K., and Fedorov, N.F., Pore structure and chemical state of the surface of carbon adsorbents communication 1.Selection of the comparative isotherm of adsorption of nitrogen vapors on the surface of carbon adsorbents, Bull. Acad. Sci. USSR, Division Chem. Sci., 1988, vol. 37, p. 204.
  31. Huang, Z., Liao,Z., Yang, W., Zhou, H., Fu, Ch., Gong, Yi., Chen, L., and Kuang, Ya., Different types of nitrogen species in nitrogen-doped carbon material: the formation mechanism and catalytic role on oxygen reduction reaction, Electrochim. Acta, 2017, vol. 245, p. 957.
  32. Sang, Y., Fu, A., Li, H., Zhang, J., Li, Z., Li, H., Zhao, X.S., and Guo, P., Experimental and theoretical studies on the effect of functional groups on carbon nanotubes to its oxygen reduction reaction activity, Colloids Surfaces A: Physicochem. Eng. Aspects, 2016, vol. 506, p. 476.
  33. Youngmi, Yi, Weingberg, G., Prenzel, M., Greiner, M., Heumann, S., Becker, S., and Schlogl, R., Electrochemical corrosion of glassy carbon electrode, Catalysis Today, 2017, vol. 295, p. 32.
  34. Polyanskaya, E.M. and Taran, O.P., Research of functional groups on a surface of oxidated carbon material Sibunit methods of acid-base titration and XPS. Vestnik Tomskogo Univ., Chemistry, 2017, no. 10, p. 6.
  35. Gonzalez, E.R. and Antolini, E., Innovative Support Materials for Low-Temperature Fuel Cell Catalysts, Chapter 7, P. 341–400, in Book Polymer Electrolyte Fuel Cells. Science, Applications, and Challenges. Ed. by Franco, A.A., Pan Stanford Pablishing, 2013.
  36. Soboleva, T., Zhao, X., Malek, K., Xie, Z., Navessin, T., and HoldcrofT, S., On the micro-, meso- and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers, ACS Appl. Mater. Interfaces, 2010, vol. 2, p. 375.
  37. Kol’tsova, E.M., Bogdanovskaya, V.A., Tarasevich, M.R., Vasilenko, V.A., Stankevich, M.M., Filippova, E.B., and Khoroshavina, A.A. Computer aided simulation of hydrogen-oxygen (air) fuel cell with regard to the degradation mechanism of platinum catalyst on the cathode, Russ. J. Electrochem., 2016, vol. 52, p. 53.
  38. Jomori, S., Nonoyama, N., and Yoshiba, T., Analysis and modeling of PEMFC degradation: effect on oxygen transport, J. Power Sources, 2012, vol. 215, p. 18.
  39. Guterman, V.E., Pakharev, A.Y., and Tabachkova, N.Y., Microstructure and Size Effects in Pt/C and Pt3Ni/C Electrocatalysts Synthesised in Solutions Based on Binary Organic Solvents, Appl. Catal. A: General, 2013, vol. 453, p. 113.
  40. Smirnova, N.V., Kuriganova, A.B., Novikova, K.S., and Gerasimova, E.V., The role of carbon support morphology in the formation of catalytic layer of solid-polymer fuel cell, Russ. J. Electrochem., 2014, vol. 50, p. 899.