Examples



mdbootstrap.com



 
Статья
2019

Activation of Carbon Nanofibers and Their Application as Electrode Materials for Supercapacitors


F. S. TabarovF. S. Tabarov, M. V. AstakhovM. V. Astakhov, A. T. KalashnikA. T. Kalashnik, A. A. KlimontA. A. Klimont, V. V. KozlovV. V. Kozlov, R. R. GalimzyanovR. R. Galimzyanov
Российский журнал прикладной химии
https://doi.org/10.1134/S107042721909012X
Abstract / Full Text

Surface activation of carbon materials produced by chemical vapor deposition onto a nickel plate is described. The products of pyrolysis of a gas mixture composed of propane, butane, and isobutane were for the most part nanofibers. This material was used as the active mass for electrodes of supercapacitors. The elec¬trodes were activated with a potassium hydroxide (KOH) at temperatures of 700 and 800°C in the atmosphere of argon. The activation efficiency was evaluated by the capacitance of supercapacitor cells by measurement of the electrochemical properties based on activated and unactivated materials. The salt 1.1-dimethylpyrrolidinium tetrafluoroborate (DMP) in acetonitrile (AN) was used as an electrolyte. The specific surface area of the electrodes was determined from adsorption data. It was shown that the specific surface areas of non-activated samples and samples activated at 700 and 800°C were 190, 338, and 586 m2 g-1, respectively. The specific capacitance of the samples also became higher with increasing specific surface area.

Author information
  • National University of Science and Technology MISIS, Moscow, 119991, RussiaF. S. Tabarov, M. V. Astakhov, A. T. Kalashnik, A. A. Klimont & R. R. Galimzyanov
  • Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, 119991, RussiaV. V. Kozlov
References
  1. Frackowiak E., Phys. Chem., 2007, vol. 9, no. 15, pp. 1774–1785. https://doi.org/10.1039/b618139m
  2. Frackowiak, E. and Béguin F., Carbon, 2001, vol. {39}, pp. 937–950. https://doi.org/10.1016/S0008-6223(00)00183-4
  3. Beguin, F. and Frackowiak E., Carbon Materials for Electrochemical Energy Storage Systems, London: CRC Press, Taylor and Francis, Boca Raton, 2009, p. 529. https://doi.org/10.1201/9781420055405
  4. Yongbin Ji, Tiehu Li, Li Xiaoxian Wang, and Qilang Lin, Appl. Surface Sci., 2007, vol. 254, no. 2, pp. 506–512. https://doi.org/10.1016/j.apsusc.2007.06.034
  5. Kierzek K., Frackowiak E., Lota G., Grygle Wicz G., and Machnikowski J., Electrochim. Acta, 2004, vol. 49, no. 7, pp. 515–523. https://doi.org/10.1016/j.electacta.2003.08.026
  6. Elmouwahidi A., Zapata-Benabithe Z., Carrasco-Marín F., and Moreno Castilla C., Bioresour. Technol., 2012, vol. 111, pp. 185–190. https://doi.org/10.1016/j.biortech.2012.02.010
  7. Tey, J.P., Careem, M.A., Yarmo, M.A., and Arof, A.K., Ionics, 2016, vol. 22, no. 7, pp.1209–1216. https://doi.org/10.1007/s11581-016-1640-2
  8. Liu Yunfang, Shen Zengmin, and Yokogawa Kiyoshi, Mater. Res. Bull., 2006, vol. 41, no. 8, pp. 1503–1512. https://doi.org/10.1016/j.materresbull.2006.01.017
  9. Jiang Q., Qu, M.Z., Zhou, G.M., Zhang, B.L., and Yu, Z.L., Mater. Lett., 2002, vol. 57, no. 4, pp. 988–991. https://doi.org/10.1016/S0167-577X(02)00911-4
  10. Yan J., Ren, Ch.E., Maleski K., Hatter, Ch.B., Anasori B., Urbankowski P., Sarycheva A., and Gogotsi Y., Adv. Funct. Mater., 2017, vol. 27, no. 30, p. 1701264. https://doi.org/10.1002/adfm.201701264
  11. Chmiola J., Yushin G., Dash, R.K., Hoffman, E.N., Fischer, J.E., Barsoum, M.W., and Gogotsi Y., Electrochem. Solid State Lett., 2005, vol. 8, no. 7, pp. A357–A360. https://doi.org/10.1149/1.1921134
  12. Peigney A., Laurent, Ch., Flahaut E., Bacsa, R.R., and Rousset A., Carbon, 2001, vol. 39, no. 4, pp. 507–514. https://doi.org/10.1016/S0008-6223(00)00155-X
  13. Qi Jiang, Mei-Zhen Qu, Bo-Lan Zhang, and Zuo-Long Yu, Carbon, 2002, no. 14, vol. 40, pp. 2743–2745. https://doi.org/10.1016/S0008-6223(02)00208-7
  14. Kumar, M. and Ando, Y., J. Nanosci. Nanotechnol., 2010, vol. 10, no. 6, pp. 3739–3758. https://doi.org/10.1166/jnn.2010.2939
  15. Baker, R.T.K., Barber, M.A., Harris, P.S., Feates, F.S., and Waite, R.J., J. Catal., 1972, vol. 26, no. 1, pp. 51–62. https://doi.org/10.1016/0021-9517(72)90032-2
  16. Baker, R.T.K. and Waite, R.J., J. Catal., 1975, vol. 37, no. 1, pp. 101–105. https://doi.org/10.1016/0021-9517(75)90137-2
  17. Li, W.Z., Xie S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., and Wang G., Science, 1996, vol. 274, no. 5293, pp. 1701–1703. https://doi.org/10.1016/0008-6223(96)00074-7
  18. Hernadi K., Fonseca A., Nagy, J.B., Bernaerts D., and Lucas, A.A., Carbon, 1996, vol. 34, no. 10, pp. 1249–1257. https://doi.org/10.1016/S0009-2614(98)00745-3
  19. Kong J., Cassell, A.M., and Dai H., Chem. Phys. Lett., 1998, vol. 292, nos. 4–6, pp. 567–574. https://doi.org/10.1126/science.283.5401.512
  20. Fan S., Chapline M., Frankline N., Tombler T., Cassel, A.M., and Dai H., Science, 1999, vol. 283, no. 5401, pp. 512–514. https://doi.org/10.1016/S0009-2614(99)00521-7
  21. Satiskumar, B.C., Govindaraj A., and Rao, C.N.R., Chem. Phys. Lett., 1999, vol. 307, nos. 3–4, pp. 158–162. https://doi.org/10.1126/science.274.5293.1701
  22. Sen R., Govindaraj A., and Rao, C.N.R., Chem. Phys. Lett., 1997, vol. 267, nos. 3–4, pp. 276–280. https://doi.org/10.1016/S0009-2614(97)00080-8
  23. Nikolaev P., Bronikowski, M.J., Bradley, R.K., Rohmund F., Colbert, D.T., Smith, K.A., and Smalley, R.E., Chem. Phys. Lett., 1999, vol. 313, nos. 1–2, pp. 91–97. https://doi.org/10.1016/S0009-2614(99)01029-5
  24. Sing, K.S., Pure Appl. Chem., 1985, vol. 57, pp. 603–619. https://doi.org/10.1515/iupac.57.0007
  25. Gao X., Xing W., Zhou J., Wang G., Zhuo S., Liu Z., Xue Q., and Yan Z., Electrochim. Acta, 2014, vol. 133, pp. 459–466. https://doi.org/10.1016/j.electacta.2014.04.101
  26. Brett, C.M.A. and Brett, A.M.O., Electrochemistry, Oxford Science Publ., 1993, p. 224. https://doi.org/10.1002/bbpc.19940981033
  27. Taberna, P.L., Simon P., and Fauvarque, J.F., J. Electrochem. Soc., 2003, vol. 150, no. 3, pp. A292–A300. https://doi.org/10.1149/1.1543948
  28. Chmiola J., Yushin G., Dash R., and Gogotsi, Y., J. Power Sources, 2006, vol. 158, no. 1, pp. 765–772. https://doi.org/10.1016/j.jpowsour.2005.09.008
  29. Lust E., Jänes A., and Arulepp M., J. Electroanal. Chem., 2004, vol. 562, no. 1, pp. 33–42. https://doi.org/10.1016/j.jelechem.2003.07.034