Theory of Electrochemical Kinetics for Perovskite Solar Cells: Fitting Current–Voltage Curves

 Yi-Tao He Yi-Tao He ,  Yaohui Zhang Yaohui Zhang
Российский электрохимический журнал
Abstract / Full Text

Based on the reaction of electron-hole separation in perovskite solar cells, we derived the mathematical relationship between current and voltage from the viewpoint of electrochemical kinetics and, moreover, by using this relation, we successfully fitted the i–E curves. We found that the nonlinear relationships between the activation energy and the potential of the recombination reaction are the fundamental reason for the appearance of the hysteresis loop.

Author information
  • School of Physics, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, P. R. China

    Yi-Tao He &  Yaohui Zhang

  1. Ball, J.M., Lee, M.M., Hey, A., and Snaith, H.J., Low-temperature processed meso-superstructured to thin-film perovskite solar cells, Energy Environ. Sci., 2013, vol. 6, p. 1739.
  2. NREL chart. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
  3. Kim, H.-S. and Park, N.-G., Parameters affecting IV hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer, J. Phys. Chem. Lett., 2014, vol. 5, p. 2927.
  4. Zhang, Y., Yao, Z., Lin, S., Li, J., and Lin, H., Perovskite solar cells: device construction and IV hysteresis, Acta Chim. Sin., 2015, vol. 73, p. 219.
  5. Bisquert, J., Bertoluzzi, L., Mora-Sero, I., and Garcia-Belmonte, G., Theory of impedance and capacitance spectroscopy of solar cells with dielectric relaxation, drift-diffusion transport, and recombination, J. Phys. Chem. C, 2014, vol. 118, p. 18983.
  6. Nicholson, R.S. and Shain, I., Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems, Anal. Chem., 1964, vol. 36, p. 706.
  7. Miller, D.W., Eperon, G.E., Roe, E.T., Warren, C.W., Snaith, H.J., and Lonergan, M.C., Defect states in perovskite solar cells associated with hysteresis and performance, Appl. Phys. Lett., 2016, vol. 109, p. 153902.
  8. Chen, B., Yang, M., Zheng, X., Wu, C., Li, W., Yan, Y., Bisquert, J., Garcia-Belmonte, G., Zhu, K., and Priya, S., Impact of capacitive effect and ion migration on the hysteretic behavior of perovskite solar cells, J. Phys. Chem. Lett., 2015, vol. 6, p. 4693.
  9. Wei, J., Zhao, Y., Li, H., Li, G., Pan, J., Xu, D., Zhao, Q., and Yu, D., Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells, J. Phys. Chem. Lett., 2014, vol. 5, p. 3937.
  10. Marchioro, A., Teuscher, J., Friedrich, D., Kunst, M., van de Krol, R., Moehl, T., Grätzel, M., and Moser, J.-E., Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells, Nat. Photon., 2014, vol. 8, p. 250.
  11. Brenner, T.M., Egger, D.A., Kronik, L., Hodes, G., and Cahen, D., Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties, Nat. Rev. Mater., 2016, vol. 1, p. 15007.
  12. van Reenen, S., Kemerink, M., and Snaith, H.J., Modeling anomalous hysteresis in perovskite solar cells, J. Phys. Chem. Lett., 2015, vol. 6, p. 3808.
  13. Hu, C. and White, R.M., Solar Cells: from Basic to Advanced Systems, New York: Mc Graw-Hill, 1983.
  14. Södergren, S., Hagfeldt, A., Olsson, J., and Lindquist, S.-F., Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells, J. Phys. Chem., 1994, vol. 98, p. 5552.
  15. Nagaoka, H., Ma, F., de Quilettes, D.W., Vorpahl, S.M., Glaz, M.S., Colbert, A.E., Ziffer, M.E., and Ginger, D.S., Zr Incorporation into TiO2 electrodes reduces hysteresis and improves performance in hybrid perovskite solar cells while increasing carrier life times, J. Phys. Chem. Lett., 2015, vol. 6, p. 669.