Examples



mdbootstrap.com



 
Статья
2021

Oxidative Dehydrogenation of Ethane in the Presence of СО2 on CrOx/SiO2 Catalysts


A. N. IvashchenkoA. N. Ivashchenko, M. A. TedeevaM. A. Tedeeva, K. E. KartavovaK. E. Kartavova, T. R. AimaletdinovT. R. Aimaletdinov, P. V. PribytkovP. V. Pribytkov, A. L. KustovA. L. Kustov
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421120104
Abstract / Full Text

The oxidative dehydrogenation of ethane in the presence of CO2 was studied on SiO2-supported chromium oxide catalytic systems with different texture characteristics. The highest activity was displayed by the samples deposited on SiO2 with a high specific surface area. On the 5%CrОх/SiO2 catalyst, the ethylene selectivity was ~80% at ~50% conversion of ethane. The results of our physicochemical analysis showed that the catalyst activity depended on the content of Cr(VI) particles, whose formation depended on the nature of support.

Author information
  • Department of Chemistry, Moscow State University, 119991, Moscow, RussiaA. N. Ivashchenko, M. A. Tedeeva, K. E. Kartavova, T. R. Aimaletdinov, P. V. Pribytkov & A. L. Kustov
  • Gubkin Russian State University of Oil and Gas (National Research University), 119991, Moscow, RussiaA. N. Ivashchenko
  • Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, RussiaP. V. Pribytkov & A. L. Kustov
References
  1. M. B. Ansari and S.-E. Park, Energy Environ. Sci. 5, 9419 (2012).
  2. H. A. Baroudi, A. Awoyomi, K. Patchigolla, et al., Appl. Energy 287, 116510 (2021).
  3. I. P. Beletskaya and L. M. Kustov, Russ. Chem. Rev. 79, 441 (2010).
  4. O. Tursunov, L. Kustov, and Z. Tilyabaev, J. Taiwan Inst. Chem. Eng. 78, 416 (2017).
  5. J.-S. Chang, V. P. Vislovskiy, M.-S. Park, et al., Green Chem. 5, 587 (2003).
  6. D. Mukherjee, S.-E. Park, and B. M. Reddy, J. CO2 Util. 16, 301 (2016).
  7. M. A. Tedeeva, A. L. Kustov, P. V. Pribytkov, et al., Russ. J. Phys. Chem. A 95, 55 (2021).
  8. M. A. Tedeeva, A. L. Kustov, P. V. Pribytkov, et al., Mendeleev Commun. 30, 195 (2020).
  9. S. Deng, H. Li, S. Li, et al., J. Mol. Catal. A 268, 169 (2007).
  10. S. Wang, K. Murata, T. Hayakawa, et al., Appl. Catal., A 196, 1 (2000).
  11. M. Jia, D.-Y. Hong, J.-C. Chang, et al., Stud. Surf. Sci. Catal. 153, 339 (2004).
  12. I. I. Mishanin and V. I. Bogdan, Mendeleev Commun. 30, 359 (2020).
  13. M. H. Jeong, J. Sun, G. Y. Han, et al., Appl. Catal. B 270, 1188873 (2020).
  14. R. Koirala, R. Buechel, S. E. Pratsinis, et al., Appl. Catal., A 527, 96 (2016).
  15. Z. Shen, J. Liu, H. Xu, et al., Appl. Catal., A 356, 148 (2009).
  16. I. I. Mishanin, A. I. Zizganova, and V. I. Bogdan, Russ. Chem. Bull. 67, 1031 (2018).
  17. L. M. Kustov, A. V. Kucherov, and E. D. Finashina, Russ. J. Phys. Chem. A 87, 357 (2013).
  18. I. I. Mishanin, A. N. Kalenchuk, K. I. Maslakov, et al., Russ. J. Phys. Chem. A 90, 1132 (2016).
  19. I. I. Mishanin, A. N. Kalenchuk, K. I. Maslakov, et al., Kinet. Catal. 58, 156 (2017).
  20. I. I. Mishanin and V. I. Bogdan, Mendeleev Commun. 29, 455 (2019).
  21. I. I. Mishanin and V. I. Bogdan, Catal. Lett. (2020).
  22. A. B. Gaspar, J. L. F. Brito, and L. C. Dieguez, J. Mol. Catal. A 203, 251 (2003).
  23. M. A. Tedeeva, A. L. Kustov, P. V. Pribytkov, et al., Russ. J. Phys. Chem. A 92, 2403 (2018).
  24. Y. Cheng, L. Zhou, J. Xu, et al., Microporous Mesoporous Mater. 234, 370 (2016).
  25. K. Takehira, Y. Ohishi, T. Shishido, et al., J. Catal. 224, 404 (2004).