Examples



mdbootstrap.com



 
Статья
2020

Alkylation of Toluene with tert-Butyl Alcohol over Different Zeolites with the Same Si/Al Ratio


Yuanyuan WangYuanyuan Wang, Hua SongHua Song, Yixian HanYixian Han, Xinglong SunXinglong Sun, Jiaojing ZhangJiaojing Zhang, Wenyi WangWenyi Wang, Xueqin WangXueqin Wang
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427220070071
Abstract / Full Text

Three zeolites (Beta, Mordenite and ZSM-5), which present different pore channels but the same Si/Al ratio (25), were used as catalysts to investigate the effects of acidity and channel structure on the catalytic activity for toluene butylation at 180°C in an automated high-pressure stainless steel reactor. The same Si/Al ratio of the three zeolites did not result in a similar catalytic activity, since both acidity and channel structures of zeolites can affect catalytic activity. Zeolite Beta possessing a 3D 12-ring channel system, the smallest crystal size and larger amount of B acid sites exhibited the highest toluene conversion (54.0%). Mordenite, with 32.7% toluene conversion, presented higher para-selectivity than Beta, which can be explained by the shape-selective catalysis. ZSM-5 with the largest amount of B acid sites showed the lowest catalytic activity, since alkylation can occur only on the surface active sites.

Author information
  • Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, 163318, Heilongjing, ChinaYuanyuan Wang, Hua Song, Yixian Han, Jiaojing Zhang, Wenyi Wang & Xueqin Wang
  • Daqing Petrochemical Engineering Co., Ltd., Daqing, 163714, Heilongjing, ChinaXinglong Sun
References
  1. Jiang, T.S., Fang, M.L., Li, Y.Y., Zhao, Q., and Dai, L.M., J. Taiwan Inst. Chem. E., 2017, vol. 80, p. 1031. https://doi.org/10.1016/j.jtice.2017.09.029
  2. Yin, Q., Shen, T.T., Ma, J.Q., Yan, J., Xu, J., and Tian, X.M., Catal. Lett., 2017, vol. 147, p. 1214. https://doi.org/10.1007/s10562-017-2018-4
  3. Lee, H., Lee, S., Ryoo, R., and Choi, M., J. Catal., 2019, vol. 373, p. 25. https://doi.org/10.1016/j.jcat.2019.03.027
  4. Selvaraj, M., Jeon, S.H., Han, J., Sinha, P.K., and Lee, T.G., Appl. Catal. A-Gen., 2005, vol. 286, p. 44. https://doi.org/10.1016/j.apcata.2005.02.027
  5. Dong, H.J. and Shi, L., Ind. Eng. Chem. Res., 2010, vol. 49, p. 2091. https://doi.org/10.1021/ie901080t
  6. Pai, S.M., Gupta, U., and Chilukuri, S. J. Mol. Catal. A-Chem., 2007, vol. 265, p. 109. https://doi.org/10.1016/j.molcata.2006.09.046
  7. Sebastian, C.P., Pai, S.M., Sharanappa, N., and Satyanarayana, C.V., J. Mol. Catal. A-Chem., 2004, vol. 223, p. 305. https://doi.org/10.1016/j.molcata.2004.02.032
  8. Kostrab, G., Mravec, D., Bajus, M., Janotka, I., Sugi, Y., Cho, S.J., and Kim, J.H., Appl. Catal. A-Gen., 2006, vol. 299, p. 122. https://doi.org/10.1016/j.apcata.2005.10.014
  9. Selvaraj, M. and Lee, T.G., Micropor. Mesopor. Mat., 2005, vol. 85, p. 59. https://doi.org/10.1016/j.micromeso.2005.05.042
  10. Zhou, Z., Mao, W., Qin, J., Han, T., Han, C., and Wu, W., J. Mol. Catal. A-Chem., 2015, vol. 408, p. 132. https://doi.org/10.1016/j.micromeso.2017.12.021
  11. Le, S.D., Nishimura, S., and Ebitani, K., Catal. Commun., 2019, vol. 122, p. 20. https://doi.org/10.1016/j.catcom.2019.01.006
  12. Naranov, E.R., Sadovnikov, A.A., Maximov, A.L., and Karakhanov, E.A., Micropor. Mesopor. Mat., 2018, vol. 263, p. 150 https://doi.org/10.1016/j.micromeso.2017.12.021
  13. Portilla, M.T., Llopis, F.J., Martinez, C., Valencia, S., and Corma, A., Appl. Catal. A-gen., 2011, vol. 393, p. 257. https://doi.org/10.1016/j.apcata.2010.12.009
  14. Naranov, E.R., Sadovnikov, A.A., Vatsouro, I.M., and Maximov, A.L., Inorg. Chem. Front., 2020, vol. 7, p. 1400. https://doi.org/10.1039/D0QI00012D
  15. Xu, T., Liu, H.K., Zhao, Q.Y., Cen, S.Y., Du, L F., and Tang, Q H., Catal. Commun., 2019, vol.119, p. 96. https://doi.org/10.1016/j.catcom.2018.10.029
  16. Wang, Y.Y., Song, H., and Sun, X.L., RSC Adv., 2016, vol. 6, p. 107239. https://doi.org/10.1039/C6RA21054F
  17. Min, H.K., Cha, S.H., and Hong, S.B., ACS Catal., 2012, vol. 2, p. 971. https://doi.org/10.1021/cs300127w
  18. Sugi, Y. and Vinu, A., Catal. Surv. Asia, 2015, vol. 19, p. 188. https://doi.org/10.1007/s10563-015-9193-3
  19. Portilla, M.T., Llopis, F.J., Martinez, C., Valencia, S., and Corma, A., Appl. Catal. A-Gen., 2011, vol. 393, p. 257. https://doi.org/10.1016/j.apcata.2010.12.009
  20. Le, H. V., Parishan, S., Sagaltchik, A., Gobel, C., Schlesiger, C., Malzer, W., Trunschke, A., Schomacker, R., and Thomas, A., ACS Catal., 2017, vol. 7, p. 1403. https://doi.org/10.1021/acscatal.6b02372
  21. Mullen, C.A., Dorado, C., and Boateng, A.A., J. Anal. Appl. Pyrol., 2018, vol. 129, p. 195. https://doi.org/10.1016/j.jaap.2017.11.012
  22. Vieira, S. S., Magriotis, Z. M., Ribeiro, M. F., Graca, I., Fernandes, A., Lopes, J.M., Coelho, S.M., Santos, N.A., and Saczk, A. A., Micropor. Mesopor. Mat., 2015, vol. 201, p. 160. https://doi.org/10.1016/j.micromeso.2014.09.015
  23. Kasian, N., Verheyen, E., Vanbutsele, G., Houthoofd, K., Koranyi, T.I., Martens, J.A., and Kirschhock, C.E., Micropor. Mesopor. Mat., 2013, vol. 166, p. 153. https://doi.org/10.1016/j.micromeso.2012.07.017
  24. Ali, S.A. and Ogunronbi, K.E., Chem. Eng. Res. Des., 2013, vol. 91, p. 2601. https://doi.org/10.1016/j.cherd.2013.04.014
  25. Mravec, D., Zavadan, P., Kaszonyi, A., Joffre, J., and Moreau, P., Appl. Catal. A-gen., 2004, vol. 257, p. 49. https://doi.org/10.1016/S0926-860X(03)00633-1
  26. Nie, X., Janik, M. J., Guo, X., Liu, X., and Song, C., Catal. Today, 2011, vol. 165, p. 120. https://doi.org/10.1016/j.cattod.2010.11.070