Examples



mdbootstrap.com



 
Статья
2016

Studies of selectivity of oxygen reduction reaction in acidic electrolyte on electrodes modified by products of pyrolysis of polyacrylonitrile and metalloporphyrins


E. S. DavydovaE. S. Davydova, M. R. TarasevichM. R. Tarasevich
Российский электрохимический журнал
https://doi.org/10.1134/S1023193516110021
Abstract / Full Text

The rotating disk electrode technique was used to study in 0.5 M H2SO4 catalytic properties of products of pyrolysis of the metal-free polyacrylonitrile/carbon black composite, polyacrylonitrile/iron/carbon black composite, and also supported pyropolymers of Co(II) tetramethoxyphenyl porphyrine (CoTMPP) and Fe(III) tetramethoxyphenyl porphyrin chloride (FeTMPPCl). It is shown that the metal-free polyacrylonitrile/carbon black composite catalyzes the oxygen reduction reaction via the parallel path. Addition of up to 2% of Fe into the composite results in abrupt growth of the catalytic activity and share of the four-electron reaction, which provides the parallel–serial reaction path. The parallel reaction with no further catalytic conversion of H2O2 occurs on catalysts of the CoTMPP/Vulcan XC72 and FeTMPPCl/Vulcan XC72 series. The chemical composition is one of the key factors affecting activity and selectivity of CoTMPP/Vulcan XC72 catalysts. An increase in the precursor content from 5 to 30% is accompanied by an increase in selectivity k 1/k 2 from 0.14–0.30 to 0.5–1.7, where k 1 is the rate constant of the reaction of O2 reduction to H2O, k 2 is the rate constant of the reaction of O2 reduction to H2O2.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 119071, RussiaE. S. Davydova & M. R. Tarasevich
References
  1. Jasinski, R., Nature, 1964, vol. 201, p. 1212.
  2. Jasinski, R., J. Electrochem. Soc., 1965, vol. 112, p. 526.
  3. Jahnke, H., Schonborn, M., and Zimermann, G., Top. Curr. Chem., 1976, vol. 61, p. 133.
  4. Zimmermann, G., Schonborn, M., Magenau, H., Jahnke, H., and Becker, B., US Patent 3930884, 1976.
  5. Levina, O.A. and Radyushkina, K.A, USSR Inventor’s Certificate no. 542416, 1977.
  6. Bagotzky, V.S., Tarasevich, M.R., Radyushkina, K.A., Levina, O.A., and Andrusyova, S.I., J. Power Sources, 1977/1978, vol. 2, p. 233.
  7. Gupta, S.L., Tryk, D., Bae, I., Aldred, W., and Yeager, E., J. Electrochem. Soc., 1989, vol. 134, p. C129.
  8. Strickland, K., Miner, E., Jia, Q., Tylus, U., Ramaswamy, N., Liang, W., Sougrati, M.-T., Jaouen, F., and Mukerjee, S., Nat. Commun., 2015, vol. 6, p. 7343.
  9. Shui, J., Wang, M., Du, F., and Dai, L., Sci. Adv., 2015, vol. 1, no. 1.
  10. Tsivadze, A.Yu, Tarasevich, M.R., Kuzov, A.V., Kuznetsova, L.N., Lozovaya, O.V., and Davydova, E.S., Dokl. Phys. Chem., 2012, vol. 442, no. 2, p. 45.
  11. Jaouen, F., Herranz, J., Lefèvre, M., Dodelet, J.P., Kramm, U.I., Herrmann, I., Bogdanoff, P., Maruyama, J., Nagaoka, T., Garsuch, A., Dahn, J.R., Olson, T., Pylypenko, S., Atanassov, P., and Ustinov, E.A., ACS Appl. Mater. Interfaces, 2009, vol. 1, p. 1623.
  12. Tarasevich, M.R., Bogdanovskaya, V.A., and Andreev, V.N., Catal. Ind., 2014, vol. 6, no. 2, p. 159.
  13. Tarasevich, M.R., Bogdanovskaya, V.A., Gavrilov, Yu.G., Zhutaeva, G.V., Kazanskii, L.P., Koltsova, E.M., Kuzov, A.V., Lozovaya, O.V., Modestov, A.D., Radina, M.V., and Filimonov, V.Ya., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, p. 125.
  14. Guterman, A.V., Pakhomova, E.B., Guterman, V.E., Kabirov, Yu.V., and Grigor’ev, V.P., Inorg. Mater., 2009, vol. 45, p. 767.
  15. Davydova, E.S., Russ. J. Electrochem., 2013, vol. 49, p. 733.
  16. Bonakdarpour, A., Dahn, T.R., Atanasoski, R.T., Debe, M.K., and Dahn, J.R., Electrochem. Solid. State Lett., 2008, vol. 11, p. B208.
  17. Feng, Y., He, T., and Alonso-Vante, N., Electrochim. Acta, 2009, vol. 54, p. 5252.
  18. Biddinger, E.J., von Deak, D., Singh, D., Marsh, H., Tan, B., Knapke, D.S., and Ozkan, U.S., J. Electrochem. Soc., 2011, vol. 158, p. B402.
  19. Wu, G., More, K.L., Johnston, C.M., and Zelenay, P., Science, 2011, vol. 332, p. 443.
  20. Sun, T., Wu, Q., Che, R., Bu, Y., Jiang, Y., Li, Y., Yang, L., Wang, X., and Hu, Z., ACS Catal., 2015, vol. 5, p. 1857.
  21. Jacobs, R.C.M., Janssen, L.J.J., and Barendrecht, E., Electrochim. Acta, 1985, vol. 30, p. 1085.
  22. Alonso-Vante, N., Tributsch, H., and Solorza-Feria, O., Electrochim. Acta, 1995, vol. 40, p. 567.
  23. Durón, S., Rivera-Noriega, R., and Solorza-Feria, O., J. New Mater. Electrochem. Syst., 2001, vol. 4, p. 17.
  24. Bouwkamp-Wijnoltz, A.L., Visscher, W., and van Veen, J.A.R., Electrochim. Acta, 1998, vol. 43, p. 3141.
  25. Lefèvre, M. and Dodelet, J.-P., Electrochim. Acta, 2003, vol. 48, p. 2749.
  26. Dodelet, J.P., N4-Macrocyclic Metal Complexes: Electrocatalysis. Electrophotochemistry and Biomimetic Electroanalysis, New York: Springer Sci. + Business Media. Inc., 2006, p. 83.
  27. Davydova, E.S. and Tarasevich, M.R., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, p. 240.
  28. Schmidt, T.J. and Gasteiger, H.A., Handbook of Fuel Cells: Fundamentals, Technology and Applications, West Sussex: John Wiley & Sons, 2003, vol. 2, p. 316.
  29. Tarasevich, M.R., Khrushcheva, E.I., and Filinovskii, V.Yu., Vrashchayushchiisya diskovyi elektrod s kol’tsom (Rotating Ring–Disk Electrode), Moscow: Nauka, 1987.
  30. Borja-Arco, E., Jimenez Sandoval, O., Escalante-Garcia, J., and Sandoval-Gonzalez, A., Int. J. Hydrogen Energy, 2011, vol. 36, p. 103.