Examples



mdbootstrap.com



 
Статья
2020

The Regimes for Sustaining a Hollow-Cathode Glow Discharge with a Hot Filament Inside the Cavity


N. V. LandlN. V. Landl, Yu. D. KorolevYu. D. Korolev, V. G. GeymanV. G. Geyman, O. B. FrantsO. B. Frants, I. A. ShemyakinI. A. Shemyakin, V. S. KasyanovV. S. Kasyanov, I. V. LopatinI. V. Lopatin, S. S. KovalskiiS. S. Kovalskii
Российский физический журнал
https://doi.org/10.1007/s11182-020-01940-9
Abstract / Full Text

The results of investigations of a low-pressure hollow-cathode glow discharge with a hot filament (thermionic cathode) inside the cavity are presented. The current-voltage characteristics (CVCs) of the discharge and the dependences of the current delivered to the thermionic and hollow cathodes on the discharge burning voltage are obtained at different gas pressures and filament currents. It is shown that the major fraction of the current is transferred in the thermionic cathode circuit. For interpretation of the CVCs, a model is accepted, which uses a generalized coefficient (rather than a conventionally utilized secondary-emission coefficient), which includes not only the cathode bombardment with ions but also the emission current induced by an external source. An estimation is made of the discharge parameters. The model is shown to be quite consistent with the experiment.

Author information
  • Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, RussiaN. V. Landl, Yu. D. Korolev, V. G. Geyman, O. B. Frants, I. A. Shemyakin, V. S. Kasyanov, I. V. Lopatin & S. S. Kovalskii
References
  1. Y. S. Akishev, V. B. Karal’nik, A. V. Petryakov, et al., Plasma Phys. Rep., 42, No. 1, 14 (2016).
  2. N. V. Gavrilov and A. S. Kamenetskikh, Rev. Sci. Instrum., 75, 1875 (2004).
  3. E. Dewald, K. Frank, D. H.H. Hoffman, et al., IEEE Trans. Plasma Sci., 25, 272 (1997).
  4. G. Y. Yushkov, Rev. Sci. Instrum., 75, 1582 (2004).
  5. K. Bergmann, J. Vieker, and A. Wezyk, J. Appl. Phys., 120, No. 14, 143302 (2016).
  6. V. M. Borisov, A. V. Eltsov, A. S. Ivanov, et al., J. Phys. D: Appl. Phys., 37, 3254 (2004).
  7. O. Rosier, R. Apetz, K. Bergmann, et al., IEEE Trans. Plasma Sci., 32, 240 (2004).
  8. Y. D. Korolev and N. N. Koval, J. Phys. D: Appl. Phys., 51, No. 32, 323001 (2018).
  9. R. P. Lamba, V. Pathania, B. L. Meena, et al., Rev. Sci. Instrum., 86, No. 10, 103508 (2015).
  10. J. Q. Yan, S. K. Shen, Y. A. Wang, et al., Rev. Sci. Instrum., 89, No. 6, 065102 (2018).
  11. K. Frank and J. Christiansen, IEEE Trans. Plasma Sci., 17, No. 5, 748–753 (1989).
  12. Y. D. Korolev and K. Frank, IEEE Trans. Plasma Sci., 27, 1525 (1999).
  13. M. Lin, H. Liao, M. Liu, et al., J. Instrum., 13, 04004 (2018).
  14. N. Kumar, D. K. Pal, A. S. Jadon, et al., Rev. Sci. Instrum., 87, No. 3, 033503 (2016).
  15. J. Zhang and X. Liu, IEEE Trans. Dielectr. Electr. Insul., 24, No. 4, 2050–2055 (2017).
  16. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., Phys. Plasmas, 25, No. 11, 113510 (2018)
  17. N. V. Landl, Yu. D. Korolev, V. G. Geyman, and O. B. Frants, Russ. Phys. J., 60., No. 8, 1277–1284 (2017).
  18. N. V. Landl, Yu. D. Korolev, V. G. Geyman, et al., Russ. Phys. J., 60., No. 8, 1269–1276 (2017).
  19. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., IEEE Trans. Plasma Sci., 43, No. 8, 2349–2353 (2015).
  20. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., Plasma Phys. Rep., 44, No. 1, 110–117 (2018).
  21. N. P. Kondrat’eva, N. N. Koval, Y. D. Korolev, and P. M. Schanin, J. Phys. D: Appl. Phys., 32, 699 (1999).
  22. M. S. Vorob'ev, V. N. Devyatkov, N. N. Koval, and S. A. Sulakshin, Russ. Phys. J., 60., No. 8, 1386–1391 (2017).
  23. V. V. Denisov, Y. H. Akhmadeev, I. V. Lopatin, et al., Book Series: IOP Conf. Series., Materials Science and Engineering, 81, 012067 (2015).
  24. I. V. Lopatin, Y. H. Akhmadeev, and N. N. Koval, Rev. Sci. Instrum., 86, 103301 (2015).
  25. N. N. Koval, Y. F. Ivanov, I. V. Lopatin, et al., Russ. J. General Chem., 85, 1326 (2015).
  26. N. N. Koval, A. I. Ryabchikov, D. O. Sivin, et al., Surf. Coat. Technol., 340, 152 (2018).
  27. Y. H. Akhmadeev, V. V. Denisov, N. N. Koval, et al., Plasma Phys. Rep., 43., No. 1, 67 (2017).
  28. V. N. Devyatkov and N. N. Koval, Russ. Phys. J., 60., No. 9, 1509–1514 (2017).
  29. A. V. Kozyrev, Y. D. Korolev, V. G. Rabotkin, and I. A. Shemyakin, J. Appl. Phys., 74, No. 9, 5366–5371 (1993).
  30. K. N. Ul’yanov, High Temp., 37, 337 (1999).
  31. L. C. Pitchford, N. Ouadoudi, J. P. Boeuf, et al., J. Appl. Phys., 78, 77 (1995).
  32. Y. D. Korolev, O. B. Frants, N. V. Landl, et al., IEEE Trans. Plasma Sci., 41, No. 8, 2087 (2013).
  33. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., Plasma Phys. Rep., 42, No. 8, 799–807 (2016).