Planar sensors for determination of polyoxyethylated compounds

N. M. Makarova N. M. Makarova , E. G. Kulapina E. G. Kulapina
Российский электрохимический журнал
Abstract / Full Text

For determination of nonionic surface-active substances (NSAS), in particular, polyoxyethylated nonylphenols, in aqueous solutions, the planar sensors are developed based on various carbon materials (graphite, carbon nanotubes). The effect of the nature and concentration of electroactive compounds (EAC), carbonaceous materials, plasticizers on the electroanalytical and performance characteristics of planar NSAS sensors is observed. It is shown that the planar electrodes can be used in determination of individual homologues of polyoxyethylated nonylphenols in the concentration interval from 1 × 10–5 to 1 × 10–2 М at pH 4–10 in model solutions, in small-volume samples, for determination of the content of surfactants in technological preparations, domestic chemistry products, and also in environmental monitoring of natural waters.

Author information
  • Institute of Chemistry, Chernyshevskii Saratov State University, Saratov, 410012, Russia

    N. M. Makarova & E. G. Kulapina

  1. Li, M., Li, Y.-T., Li, D.-W., and Long, Y.T., Recent developments and applications of screen-printed electrodes in environmental assays - a review, Anal. Chim. Acta, 2012, vol. 734, p. 31.
  2. Alonso-Lomillo, M.A., Dominguez-Renedo, O., and Arcos-Martinez, M.J., Screen-printed biosensors in microbiology; a review, Talanta, 2010, vol. 82, no. 5, p. 1629.
  3. Honeychurch, K.C. and Hart, J.P., Screen-printed electrochemical sensors for monitoring metal pollutants, TrAC, Trends Anal. Chem., 2003, vol. 22, no. 7, p. 456.
  4. Gornall, D.D., Collyer, S.D., and Higson, S.P.J., Investigations into the use of screen-printed carbon electrodes as templates for electrochemical sensors and sonochemically fabricated microelectrode arrays, Sens. Actuators, 2009, vol. 141, no. 2, p. 581.
  5. Wang, J., Tian, B., Nascimento, V.B., and Agnes, L., Performance of screen-printed carbon electrodes fabricated from different carbon inks, Electrochim. Acta, 1998, vol. 43, no. 23, p. 3459.
  6. Trojanowicz, M., Impact of nanotechnology on design of advanced screen-printed electrodes for different analytical applications, TrAC, Trends Anal. Chem., 2016, vol. 84.
  7. Frag, E.Y.Z., Mohamed, G.G., and El-Sayed, W.G., Potentiometric determination of antihistaminic diphenhydramine hydrochloride in pharmaceutical preparations and biological fluids using screen-printed electrode, Bioelectrochemistry, 2011, vol. 82, no. 2, p. 79.
  8. Veltsistas, P.G., Prodromidis, M.I., and Efstathiou, C.E., All-solid-state potentiometric sensors for ascorbic acid by using a screen-printed compatible solid contact, Anal. Chim. Acta, 2004, vol. 502, no. 1, p. 15.
  9. Mohamed, G.G., Nour El-Dien, F.A., Frag, E.Y.Z., and Mohamed, M.E.-B, In situ modified screen printed and carbon paste ion selective electrodes for potentiometric determination of naphazoline hydrochloride in its formulation, J. Pharm. Anal., 2013, vol. 3, no. 5, p. 367.
  10. Khaled, E., Hassan, H.N.A., Mohamed, G.G., Ragab, F.A., and Seleim, A.E.A., Disposable potentiometric sensors for monitoring cholinesterase activity, Talanta, 2010, vol. 83, no. 2, p. 357.
  11. Brainina, Kh.Z., Alyoshina, L.V., Gerasimova, E.L., Kazakov, Ya.E., Ivanova, A.V., Beykin, Ya.B., Belyaeva, S.V., Usatova, T.I., and Khodos, M.Ya., New electrochemical method of determining blood and blood fractions antioxidant activity, Electroanalysis, 2009, vol. 21, nos. 3-5, p. 618.
  12. Laczka, O., Skillman, L., Ditcham, W.G., Hamdorf, B., Wong, D.K.Y., Bergquist, P., and Sunna, A., Application of an ELISA-type screen printed electrode based potentiometric assay to the detection of Cryptosporidium Parvum Oocysts, J. Microbiol. Methods, 2013, vol. 95, no. 2, p. 182.
  13. Mohamed, G.G., Ali, T.A., El-Shahat, M.F., Al-Sabagh, A.M., Migahed, M.A., and Khaled, E., Potentiometric determination of cetylpyridinium chloride using a new type of screen-printed ion selective electrodes, Anal. Chim. Acta, 2010, vol. 673, p. 79.
  14. Khaled, E., Mohamed, G.G., and Awad, T., Disposal screen-printed carbon paste electrodes for the potentiometric titration of surfactants, Sens. Actuators, 2008, vol. 135, p. 74.
  15. Mohamed, G.G., Ali, T.A., El-Shahat, M.F., Migahed, M.A., and Al-Sabagh, A.M., Novel screenprinted electrode for the determination of dodecyltrimethylammonium bromide in water samples, Drug Test. Anal., 2012, vol. 4, no. 12, p. 1009.
  16. Chernyshov, D.V., Khrenova, M.G., Pletnev, I.V., and Shvedene, N.V., Screen-printed ion-selective electrodes covered with membranes containing ionic liquids, Mendeleev Commun., 2008, vol. 18, no. 2, p. 88.
  17. Makarova, N.M. and Kulapina, E.G., Planar electrodes based on carbon nanotubes for the potentiometric determination of homologous sodium alkyl sulfates, J. Anal. Chem., 2015, vol. 70, p. 879.
  18. Makarova, N.M and Kulapina, E.G., Planar potentiometric sensors based on carbon materials for determination of sodium dodecyl sulfate, Russ. J. Electrochem., 2015, vol. 51, p. 672.
  19. Kulapina, E.G., Chernova, R.K., and Kulapin, A.I., Potentsiometricheskie sensory dlya opredeleniya sinteticheskikh poverkhnostno-aktivnykh veshchestv (Potentiometric Sensors for Determination of Synthetic Surfactants), Saratov: Nauchnaya kniga, 2008.
  20. Buck, R.P. and Lindner, E., Recommendations for nomenclature of ion-selective electrodes, Pure Appl. Chem., 1994, vol. 66, no. 12, p. 2527.
  21. Morf, V., Printsipy raboty ionselektivnykh elektrodov i membrannyi transport (Principles of Functioning of Ion Selective Electrodes and Membrane Transport), Moscow: Mir, 1985.
  22. Kulapina, E.G., Chernova, R.K., Apukhtina, L.V., Mitrokhina, S.A., and Materova, E.A., Electroanalytical, dynamic, and transport properties of nonionic surfactant-selective membranes, J. Anal. Chem., 2000, vol. 55, no. 11, p. 1034.
  23. Kulapin, A.I., Mikhailova, A.M., and Kulapina, E.G., Stabilizing potential of solid-contact sensors selective towards surface-active substances, Russ. J. Electrochem., 2003, vol. 39, p. 585.
  24. Lange, K.R., Poverkhnostno-aktivnye veshchestva. Sintez, svoistva, analiz, primenenie (Surfactants: Synthesis, Properties, Analysis, Application), Zaichenko, L.P., Ed., St. Petersburg: Professiya, 2007.
  25. Umezawa, Y., Buhlmann, P., Umezawa, K., Tohda, K., and Amemiya, S., Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic cations, Pure Appl. Chem., 2000, vol. 72, no. 10, p. 1851.