Examples



mdbootstrap.com



 
Статья
2019

Extraction of Iron(III) from Chloride Nickel Solutions with Aliphatic Ketones


A. G. KasikovA. G. Kasikov, A. Yu. SokolovA. Yu. Sokolov, E. A. ShchelokovaE. A. Shchelokova, I. V. GlukhovskayaI. V. Glukhovskaya
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427219080081
Abstract / Full Text

Extractive recovery of iron(III) from chloride nickel solutions with macromolecular aliphatic ketones was studied. It was found that the extraction of Fe(III) grows with increasing concentration of chloride ions in solution. For the hydrochloric acid solution, the maximum degree of extraction (99%) is observed at an HCl concentration < 6 mol dm−3. For the nickel chloride solution the highest extraction (95%) is reached at a Cl− concentration ≥ 8 mol dm−3. A high selectivity of ketones with respect to iron(III) was demonstrated, they hardly extract such microscopic impurities as Cu2+ and Co2+, as well as the macroscopic component Ni2+. The optimal ratio between the organic and aqueous phases for washing the extract to remove the carried-away nickel was determined. Enlarged laboratory tests on deep separation of iron and nickel were performed. As a result, a solution of ferric chloride with Fe(III) concentration of 76.8 g dm−3 with total content of nickel(II), cobalt(II), and copper(II) impurities less than 0.022 g dm−3.

Author information
  • Tananaev Institute of Chemistry of Rare Elements and Mineral Resources, Kola Scientific Center, Russian Academy of Sciences, Apatity, Murmansk oblast, 184209, RussiaA. G. Kasikov, A. Yu. Sokolov, E. A. Shchelokova & I. V. Glukhovskaya
References
  1. Ritcey, G.M. and Ashbrook, A.W., Solvent Extraction, Principles and Applications to Process Metallurgy, Amsterdam: Elsevier Sci. Publ. Co., 1979.
  2. Reznik, I.D., Sobol’, S.I., and Khudyakov, V.M., Kobal’t (Cobalt), Moscow: Mashinostroenie, 1995, vol. 2, pp. 369–371.
  3. Motov, D.L. and Vasekha, M.V., Metally, 2005, no. 1, pp. 42–47.
  4. Kasikov, A.G., Tsv. Met., 2012, no. 7, pp. 29–35.
  5. Mao, X.H. and Liu, D.J., Asian J. Chem., 2013, vol. 6, no. 9, pp. 4753–4756.
  6. Agrawal, A., Kumari, S., and Sahu, K.K., J. Environ. Manage., 2011, vol. 92, pp. 3105–3111.
  7. El-Dessouky, S.I., El-Nadi, Y.A., Anmed, I.M., Saad, E.A., and Daoud, J.A., Chem. Eng. Process., 2008, vol. 47, pp. 177–183.
  8. Mahmoud, M.E. and Soliman, E.M., Talanta, 1997, vol. 44, pp. 1063–1071.
  9. Lee, M.S., Lee, K.J., and Oh, Y.J., Mater. Trans., 2004, vol. 45, no. 7, pp. 2364–2368.
  10. Cai, X., We, B., Han, J., Li, Y., Cui, Y., and Sun, G., Hydrometallurgy, 2016, vol. 164, pp. 1–6.
  11. Sun, X., Sun, Y., and Yu, J., Sep. Purif. Technol., 2016, vol. 159, pp. 18–22.
  12. Mishra, R.K., Rout, P.C., Sarangi, K., and Nathsarma, K.C., Hydrometallurgy, 2011, vol. 108, pp. 93–99.
  13. Voropanova, L.A. and Velichko, L.N., Russ. J. Appl. Chem., 1999, vol. 72, no. 11, pp. 1970–1975.
  14. Farouq, R. and Selim, Y., Chill. Chem. Soc., 2017, vol. 62, no. 2, pp. 3427–3429.
  15. Zhang, G., Chen, D., Wei, G., Zhao, H., Wang, L., Qi, T., Meng, F., and Meng, L., Sep. Purif. Technol., 2015, vol. 150, pp. 132–138.
  16. Mao, X., Proc. 3rd Int. Conf. on Material, Mechanical and Manufacturing Engineering, 2015, pp. 126–132.
  17. Wang, X., Liu, W., Liang, B., Lü, L., and Li, C., Sep. Purif. Technol., 2016, vol. 158, pp. 96–102.
  18. Khomchenko, O.A., Sadovskaya, G.I., Dubrovskii, V.L., Smirnov, P.V., and Tsapakh, S.L., Tsv. Met., 2014, no. 9, pp. 81–88.
  19. Sokolov, A.Yu. and Kasikov, A.G., Tr. Kola Nauch. Tsentra Ross. Akad. Nauk, 2018, vol. 6, no. 9, pp. 60–66.
  20. Zolotov, Yu.A., Seryakova, I.V., Karyakin, A.V., Gribov, L.A., and Zubrilina, M.E., Doklady Akad. Nauk SSSR, 1962, vol. 145, no. 1, pp. 100–103.
  21. Lee, M.S. and Nicol, M.J., J. Korean Inst. Met. Mater., 2008, vol. 46(1), pp. 20–25.
  22. Lakshmanan, VI., Sridhar, R., Tait, D., and Halim, M.A., Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies. The Minerals, Metals & Materials Ser., 2017, pp. 169–178.
  23. Lee, M.S. and Lee, K.-J., Hydrometallurgy, 2005, vol. 80(3), pp. 163–169.
  24. Gromov, P.B., Kasikov, A.G., Shchelokova, E.A., and Petrova, A.M., Hydrometallurgy, 2018, vol. 175, pp. 187–192.