Examples



mdbootstrap.com



 
Статья
2022

Magnetically Controlled Terahertz Polarizationsensitive Filter Based on 5BDSR Microparticle Ferrofluid


Z. S. KochnevZ. S. Kochnev, A. I. Knyaz’kovaA. I. Knyaz’kova, A. V. BorisovA. V. Borisov
Химия и современные технологии
https://doi.org/10.1007/s11182-022-02570-z
Abstract / Full Text

The paper proposes the magnetically controlled polarization-sensitive filter operating in the range of 0.2 to 1.5 THz. This filter is based on the created magnetic fluid comprising 5BDSR (FeNbCuMoCoBSi) amorphous alloy particles 50 μm in size and synthetic motor oil 5W-40. It is shown that the particle control in the magnetic fluid assists in the creation of a diffraction grating equivalent.

Author information
  • National Research Tomsk State University, Tomsk, RussiaZ. S. Kochnev, A. I. Knyaz’kova, G. K. Raspopin & A. V. Borisov
  • Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, Tomsk, RussiaA. I. Knyaz’kova
  • Tomsk Forestry Technical College, Tomsk, RussiaT. A. Meshcheryakova
References
  1. G. E. Dunaevskii, V. I. Suslyaev, V. A. Zhuravlev, et al., in: Proc. 39th IRMMW-THz Int. Conf., Tucson (2014), pp. 1–2.
  2. D. S. Bychanok, M. A. Kanygin, A. V. Okotrub, et al., JETP Lett., 93, 607−611 (2011).
  3. C. Chang, L. Huang, J. Nogan, and H. Chen, APL Photonics 3, 051602-1–051602-9 (2018).
  4. L. J. Liang, J. Yao, and X. Yao, Chin. Phys. Lett., 29, No. 9, 094209-1–094209-3 (2012).
  5. R. Xiong and J. Li, J. Infrared Millim. Te., 39, 1039−1046 (2018).
  6. Y. Chiang, C. Yang, Y. Yang, et al., Appl. Phys. Lett., 99, 1039−1046 (2011).
  7. C. Winnewisser, F. Lewen, M. Schall, et al., IEEE Trans. Microw. Theory Tech., 48, 744−749 (2000).
  8. S. Kaliteevski, S. Brand, J. Cook, et al., Opt. Express, 16, 7330−7335 (2008).
  9. D. Wu, N. Fang, C. Sun, et al., Appl. Phys. Lett., 83, 201−203 (2003).
  10. M. A. Odit, I. S. Vendik, D. S. Kozlov, and V. N. Torbenko, in: Proc. All-Russian Conf. “Microwave Electronics,” Saint-Petersburg (2012), pp. 335−339.
  11. D. M. Ezhov, Z. S. Kochnev, E. D. Fakhrutdinova, et al., Proc. SPIE, 11582, 11582X-1–11582X-6 (2020).
  12. D. Zyatkov, V. Balashov, V. Yurchenko, et al., Prog. Electromagn. Res. M, 80, 103−109 (2019).
  13. C. Scherer and A. M. Figueiredo Neto, Brazilian J. Phys., 35, 718−727 (2005).
  14. D. Zyatkov, A. Yurchenko, V. Yurchenko, and V. Balashov, IOP Conf. Ser.: Mater. Sci. Eng., 363, 012023-1–012023-6 (2018).
  15. D. Zyatkov, A. Yurchenko, and V. Yurchenko, IOP Conf. Ser.: Journal of Physics: Conf. Series., 881, 012037-1–012037-5 (2017).
  16. R. Stroubel, L. Xubo, W. Xuefei, and T. Russel, MDPI Mater., 13, No 12, 2712-1–2712-18 (2020).
  17. D. Zyatkov, V. Balashov, A. Borisov, et al., in: Proc. Int. Sci. “Progress in Electromagnetics Research Symposium,” Toyama (2018), pp. 843−847.
  18. A. Joseph and S. Mathew, ChemPlusChem, 79, 1382−1420 (2014).
  19. S. Gens and B. Derin, Curr. Opin. Chem. Eng., 3, 118−124 (2014).
  20. R. Kaur, A. Hasan, I. Nusrat, et al., J. Sep. Sci., 37, 1805−1825 (2014).
  21. D. O. Zyat’kov, Z. S. Kochnev, A. I. Knyaz’kova, and A. V. Borisov, Russ. Phys. J., 62, No. 3, 400–405 (2019).