Статья
2021

The Effect of Thermal Treatment on the Physical Properties of LiCoO2 Stoichiometric Composition


R. I. Korneikov R. I. Korneikov , V. V. Efremov V. V. Efremov , V. I. Ivanenko V. I. Ivanenko , K. A. Kesarev K. A. Kesarev
Российский электрохимический журнал
https://doi.org/10.1134/S1023193521050074
Abstract / Full Text

Lithium cobaltate with stoichiometric composition (LiCoO2) is synthesized by the sol–gel method. The physical parameters (particle size, specific surface area, and specific static conductivity) of studied samples are found and their dependence on the calcination temperature is revealed. The following three conduction mechanisms are shown to contribute to the conductivity value: frequency-independent σ0, ionic transport in the sample bulk σsv, and ionic transport at the electrode/ionic conductor interface σdl. The optimal modes of thermal treatment that allow the highly developed specific surface of LiCoO2 to be retained are determined.

Author information
  • Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Science Center, Russian Academy of Sciences, 184209, Apatity, Russia

    R. I. Korneikov, V. V. Efremov, V. I. Ivanenko & K. A. Kesarev

References
  1. Yaroslavtsev, A.B., Kulova, T.L., and Skundin, A.M., Electrode nanomaterials for lithium-ion batteries, Russ. Chem. Rev., 2015, vol. 84, p. 826. https://doi.org/10.1070/RCR4497
  2. Abe, T. and Koyama, T., Thermodynamic modeling of the LiCoO2–CoO2 pseudo-binary system, Calphad: Comp. Coupl. Phase Diag. Thermochem., 2011, vol. 35, p. 209. https://doi.org/10.1016/j.calphad.2011.02.006
  3. Deng, Y., Kang, T., Ma, Z., Tan, X., Song, X., Wang, Z., Pang, P., Shu, D., Zuo, X., and Nan, J., Safety influences of the Al and Ti elements modified LiCoO2 materials on LiCoO2/graphite batteries under the abusive conditions, Electrochim. Acta, 2019, vol. 295, p. 703. https://doi.org/10.1016/j.electacta.2018.11.010
  4. Chao, D., Wang, L., Shen, W., and Guo, S., Effects of the lateral sizes and basal plane structure of graphene on the electrochemical properties of LiCoO2, J. Alloys Compd., 2019, vol. 785, p. 557. https://doi.org/10.1016/j.jallcom.2019.01.126
  5. Bezza, I., Luais, E., Ghamouss, F., Zaghriou, M., Tran-van, F., and Sakai, J., LiCoO2 with double porous structure obtained by electrospray deposition and its evaluation as an electrode for lithium-ion battery, J. Alloys Compd., 2019, vol. 805, p. 19. https://doi.org/10.1016/j.jallcom.2019.07.062
  6. Yoon, M., Lee, S., Lee, D., Kim, J., and Moon, J., All-solid-state thin film battery based on well-aligned slanted LiCoO2 nanowires fabricated by glancing angle deposition, Appl. Surf. Sci., 2017, vol. 412, p. 537. https://doi.org/10.1016/j.apsusc.2017.03.268
  7. Yasuharaa, S., Yasuia, S., Teranishib, T., Yoshikawa, Y., Taniyama, T., and Itoh, M., The effects of BaTiO3 nanodots density support on epitaxial LiCoO2 thin-film for high-speed rechargeability, Electrochem. Commun., 2019, vol. 109, p. 106604. https://doi.org/10.1016/j.elecom.2019.106604
  8. Silva, S.P., Sita, L.E., Santos, C.S., and Scarminio, J., Effects on the phases and crystalline structures of LiCoO2 cathode under thermal treatments up to 400°C, J. Alloys Compd., 2019, vol. 810, p.151933. https://doi.org/10.1016/j.jallcom.2019.151933
  9. Meng, Q., Zhang, Y., and Dong, P., A combined process for cobalt recovering and cathode material regeneration from spent LiCoO2 batteries: Process optimization and kinetics aspects, Waste Manage. (Oxford), 2018, vol. 71, p. 372. https://doi.org/10.1016/j.wasman.2017.10.030
  10. Xu, N., Zhoua, H., Liao, Y., Li, G., Xu, M., and Li, W., A facile strategy to improve the cycle stability of 4.45 V LiCoO2 cathode in gel electrolyte system via succinonitrile additive under elevated temperature, Solid State Ionics, 2019, vol. 341, p. 115049. https://doi.org/10.1016/j.ssi.2019.115049
  11. Santosa, C.S., Alvesa, J.C., Silva, S.P., Sita, L.E., Silva, P.R.-C., Almeida, L.C., and Scarminio, J., A closed-loop process to recover Li and Co compounds and to resynthesize LiCoO2 from spent mobile phone batteries, J. Hazard. Mater., 2019, vol. 362, p. 458. https://doi.org/10.1016/j.jhazmat.2018.09.039
  12. Chao, D., Wang, L., Shen, W., and Guo, S., Effects of the lateral sizes and basal plane structure of graphene on the electrochemical properties of LiCoO2, J. Alloys Compd., 2019, vol. 785, p. 557. https://doi.org/10.1016/j.jallcom.2019.01.126
  13. HakanYudar, H., Pat, S., Özen, S., Mohammadigharehbagh, R., Musaoglu, C., Korkmaz, S., and Pat, Z., Microstructural, surface and electrochemical properties of the nano layered LiCoO2 thin film cathode for Li ion battery, Vacuum, 2018, vol. 152, p. 248. https://doi.org/10.1016/j.vacuum.2018.03.043
  14. Wang, F., Jiang, Y., Lin, S., Wang, W., Hu, C., Wei, Y., Mao, B., and Liang, C., High-voltage performance of LiCoO2 cathode studied by single particle microelectrodes influence of surface modification with TiO2, Electrochim. Acta, 2019, vol. 295, p. 1017. https://doi.org/10.1016/j.electacta.2018.09.050
  15. Niemöller, A., Jakesa, P., Eichela, R.-A., and Granwehra, J., In operando EPR investigation of redox mechanisms in LiCoO2, Chem. Phys. Lett., 2019, vol. 716, p. 231. https://doi.org/10.1016/j.cplett.2018.12.022
  16. Hu, S., Wang, C., Zhou, L. Zeng, X., Shao, L., Zhou, J., Zhou, C., Huang, C., Xi, X., and Yang, L., Hydrothermal-assisted synthesis of surface aluminum-doped LiCoO2 nanobricks for high-rate lithium-ion batteries, Ceram. Int., 2018, vol. 44, p. 14995. https://doi.org/10.1016/j.ceramint.2018.05.128
  17. Lim, J., Choi, A., Kim, H., Doo, S.W., Park, Y., and Lee, K.T., In situ electrochemical surface modification for high-voltage LiCoO2 in lithium ion batteries, J. Power Sources, 2019, vol. 426, p. 162. https://doi.org/10.1016/j.jpowsour.2019.04.011
  18. Makhonina, E.V., Pervov, V.S., and Dubasova, V.S., Oxide materials as positive electrodes of lithium-ion batteries, Russ. Chem. Rev., 2004, vol. 73, p. 991. https://doi.org/10.1070/RC2004v073n10ABEH000896
  19. Porthaul, H., Le Cras, F., and Franger, S., Synthesis of LiCoO2 thin films by sol/gel process, J. Power Sources, 2010, vol. 195, p. 6262. https://doi.org/10.1016/j.jpowsour.2010.04.058
  20. Zhu, C., Yang, C., Yang, W.-D., Hsieh, C.-Y., Ysai, H.-M., and Chen, Y.-S., High performances of ultrafine and layered LiCoO2 powders for lithium batteries by a novel sol–gel process, J. Alloys Compd., 2010, vol. 496, p. 703. https://doi.org/10.1016/j.jallcom.2010.02.178
  21. Tretyakov, Yu.D., Martynenko, L. I., Grigor’ev, A.N., and Tsivadze, A.Yu., Neorganicheskaya khimiya (Inorganic Chemistry), Moscow: Khimiya, vol. I, 2001, p. 378.
  22. Levi, M.D. and Aurbach, D., Impedance of a single intercalation particle and of non-homogeneous, multilayered porous composite electrodes for Li-ion batteries, J. Phys. Chem., 2004, vol. 108, p. 11693. https://doi.org/10.1021/jp0486402
  23. Umeda, M., Dokko, K., Fujita, Y., Mohamedi, M., Uchida, I., and Selman, J.R., Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode: Part I. Graphitized carbon, Electrochim. Acta, 2001, vol. 47, p. 885. https://doi.org/10.1016/S0013-4686(01)00799-X
  24. Wang, C., Appleby, A.J., and Little, F.E., Electrochemical impedance study of initial lithium ion intercalation into graphite powders, Electrochim. Acta, 2001, vol. 46, p. 1793. https://doi.org/10.1016/S0013-4686(00)00782-9
  25. Ivanishchev, A.V., Gridina, N.A., Rybakov, K.S., Ivanishcheva, I.A., and Dixit, A., Structural and electrochemical investigation of lithium ions insertion processes in polyanionic compounds of lithium and transition metals, J. Electroanal. Chem., 2020, vol, 860, p. 113894. https://doi.org/10.1016/j.jelechem.2020.113894
  26. Churikov, A.V., Ivanishchev, A.V., Ivanishcheva, I.A., gamayuniva, I.M., Zapsis, K.V., and Sycheva, V.O., Processes of lithium intercalation into thin-film lithium-tin and lithium–carbon electrodes. Impedance spectroscopic study, Elektrokhim. Energ., 2007, no. 4(7), p. 169.
  27. Baryshnikov, S., Stukova, E., and Koroleva, E., Dielectric properties of the ferroelectric composite (NaNO2)0.9/(BaTiO3)0.1, Composites, Part B, 2014, vol. 66, p. 190. https://doi.org/10.1016/j.compositesb.2014.05.005