Examples



mdbootstrap.com



 
Статья
2021

Amphiphilic copolymers of N-vinylpyrrolidone with (di)methacrylates as promising carriers for the platinum(IV) complex with antitumor activity


S. V. KurmazS. V. Kurmaz, N. V. FadeevaN. V. Fadeeva, B. S. FedorovB. S. Fedorov, G. I. KozubG. I. Kozub, V. A. KurmazV. A. Kurmaz, V. M. Ignat’evV. M. Ignat’ev, N. S. Emel’yanovaN. S. Emel’yanova
Российский химический вестник
https://doi.org/10.1007/s11172-021-3289-x
Abstract / Full Text

Water-soluble polymer compositions of the lipophilic complex of cis-bis[(nitroxyethyl)-isonicotinamide-N]-tetrachloroplatinum(iv) with antitumor activity were prepared. The complex was solubilized by amphiphilic copolymers of N-vinylpyrrolidone (VP) with (di)methacrylates synthesized by radical copolymerization in toluene in the absence of any inhibitors of polymer chain growth. Aqueous buffer solutions of the nanostructures were studied by dynamic light scattering, and the influence of the concentrations of the complex and copolymer and temperature on the nanoparticle size (hydrodynamic radius) was estimated. The nanostructures based on the VP copolymer with triethylene glycol dimethacrylate are shown to be thermosensitive and decompose when the temperature rises to physiologically significant values. According to the TEM data, the polymer particles are spherical and contain inclusions of the PtIV complex ∼4 nm in size. The polymer compositions were studied using CV, TGA, and DSC methods. The results of IR spectroscopic analysis of the polymer compositions and quantum chemical modeling indicate the formation of the hydrogen bond between the NH groups of the complex and VP copolymer.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Akad. Semenova, 142432, Chernogolovka, Moscow Region, Russian FederationS. V. Kurmaz, N. V. Fadeeva, B. S. Fedorov, G. I. Kozub, V. A. Kurmaz, V. M. Ignat’ev & N. S. Emel’yanova
  • Faculty of Fundamental Physical and Chemical Engineering, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, 119991, Moscow, Russian FederationV. M. Ignat’ev
References
  1. A. K. Mandal, Int. J. Polym. Mater. Polym. Biomater., 2020, 70, 287; DOI: https://doi.org/10.1080/00914037.2020.1713780.
  2. M. Kalomiraki, K. Thermos, N. A. Chaniotakis, Int. J. Nanomed., 2016, 11, 1; DOI: https://doi.org/10.2147/IJN.S93069.
  3. R. M. Kannan, E. Nance, S. Kannan, D. A. Tomalia, J. Int. Med., 2014, 276, 579; DOI: https://doi.org/10.1111/joim.12280.
  4. A. Agrawal, S. Kulkarni, Int. J. Res. Dev. Pharm. Life Sci., 2015, 4, 1700.
  5. I. V. Ivanov, T. K. Meleshko, A. V. Kashina, A. V. Iakimanskii, Russ. Chem. Rev., 2019, 88, 1248; DOI: https://doi.org/10.1070/RCR4870.
  6. C. Gao, D. Yan, Progr. Polym. Sci., 2004, 29, 183; DOI: https://doi.org/10.1016/j.progpolymsci.2003.12.002.
  7. N. M. B. Smeets, Eur. Polym. J., 2013, 49, 2528; DOI: https://doi.org/10.1016/j.eurpolymj.2013.05.006.
  8. C. M. Paleos, D. Tsiourvas, Z. Sideratou, L.-A. Tziveleka, Exp. Opin. Drug Deliv., 2010, 7, 1387; DOI: https://doi.org/10.1517/17425247.2010.534981.
  9. X. Zeng, Y. Zhang, Z. Wu, P. Lundberg, M. Malkoch, A. M. Nyström, J. Polym. Sci. Part A: Polym. Chem., 2011, 50, 280; DOI: https://doi.org/10.1002/pola.25027.
  10. Y. Zhou, D. Yan, Chem. Commun., 2009, 9, 1172; DOI: https://doi.org/10.1039/B814560C.
  11. Y. Zhou, W. Huang, J. Liu, X. Zhu, D. Yan, Adv. Mater., 2010, 22, 4567; DOI: https://doi.org/10.1002/adma.201000369.
  12. N. O’Brien, A. McKee, D. C. Sherrington, A. T. Slark, A. Titterton, Polymer, 2000, 41, 6027; DOI: https://doi.org/10.1016/S0032-3861(00)00016-1.
  13. M. Luzon, C. Boyer, C. Peinado, T. Corrales, M. Whittaker, L. Tao, T. P. Davis, J. Polym. Sci., Part A: Polym. Chem., 2010, 48, 2783; DOI: https://doi.org/10.1002/pola.24027.
  14. P. Chambon, L. Chen, S. Furzeland, D. Atkins, J. V. M. Weaver, D. J. Adams, Polym. Chem., 2011, 2, 941; DOI: https://doi.org/10.1039/C0PY00369G.
  15. P. Besenius, S. Slavin, F. Vilela, D. C. Sherrington, React. Funct. Polym., 2008, 68, 1524; DOI: https://doi.org/10.1016/j.reactfunctpolym.2008.08.004.
  16. S. V. Kurmaz, A. N. Pyryaev, Polymer Sci., Ser. B, 2010, 52, 1; DOI:https://doi.org/10.1134/S156009041001001X.
  17. S. V. Kurmaz, N. A. Obraztsova, A. A. Balakina, A. A. Terent’ev, Russ. Chem. Bull. (Int. Ed.), 2016, 65, 2097; DOI: https://doi.org/10.1007/s11172-016-1558-x.
  18. S. V. Kurmaz, N. V. Fadeeva, V. M. Ignat’ev, V. A. Kurmaz, S. A. Kurochkin, N. S. Emel’yanova, Molecules, 2020, 25, 6015; DOI: https://doi.org/10.3390/molecules25246015.
  19. S. V. Kurmaz, T. N. Rudneva, N. A. Sanina, Mendeleev Commun., 2018, 28, 73; DOI: https://doi.org/10.1016/j.mencom.2018.01.024.
  20. T. N. Rudneva, N. S. Emel’yanova, S. V. Kurmaz, Chem. Papers, 2019, 73, 95; DOI: https://doi.org/10.1007/s11696-018-0569-5.
  21. S. V. Kurmaz, V. D. Sen, A. V. Kulikov, D. V. Konev, V. A. Kurmaz, A. A. Balakina, A. A. Terent’ev, Russ. Chem. Bull., 2019, 68, 1769; DOI: https://doi.org/10.1007/s11172-019-2623-z.
  22. S. V. Kurmaz, N. V. Fadeeva, B. S. Fedorov, G. I. Kozub, N. S. Emel’yanova, V. A. Kurmaz, R. A. Manzhos, A. A. Balakina, A. A. Terentyev, Mendeleev Commun., 2020, 30, 22; DOI: https://doi.org/10.1016/j.mencom.2020.01.007.
  23. N. J. Wheate, S. Walker, G. E. Craig, R. Oun, Dalton Trans., 2010, 39, 8113; DOI: https://doi.org/10.1039/C0DT00292E.
  24. S. Dilruba, G. V. Kalayda, Cancer Chemotherapy and Pharmacology, 2016, 77, 1103; DOI: https://doi.org/10.1007/s00280-016-2976-z.
  25. V. P. Torchilin, J. Control. Release, 2001, 73, 137; DOI: https://doi.org/10.1016/s0168-3659(01)00299-1.
  26. R. Duncan, Nat. Rev. Drug Discov., 2003, 2, 347; DOI: https://doi.org/10.1038/nrd1088.
  27. D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, R. Langer, Nat. Nanotechnol., 2007, 2, 751; DOI: https://doi.org/10.1038/nnano.2007.387.
  28. B. S. Fedorov, M. A. Fadeev, G. I. Kozub, S. M. Aldoshin, Z. G. Aliev, L. O. Atovmyan, N. P. Konovalova, T. E. Sashenkova, T. A. Kondrat’eva, S. V. Blokhina, Pharm. Chem. J., 2009, 43, 134; DOI: https://doi.org/10.1007/s11094-009-0256-5.
  29. B. S. Fedorov, M. A. Fadeev, G. I. Kozub, A. N. Chekhlov, N. P. Konovalova, T. E. Sashenkova, E. I. Berseneva, O. V. Dobrokhotova, L. V. Tatyanenko, Russ. Chem. Bull., 2011, 60, 1181; DOI: https://doi.org/10.1007/s11172-011-0186-8.
  30. A. G. Krivenko, A. S. Kotkin, V. A. Kurmaz, Russ. J. Electrochem., 2005, 41, 137; DOI: https://doi.org/10.1007/s11175-005-0025-z.
  31. V. P. Fadeeva, V. D. Tikhova, Kolichestvennyi elementnyi analiz organicheskikh veshchestv i materialov [Quantitative Elemental Analysis of Organic Substances and Materials], Novosibirsk Gos. Univ., Novosibirsk, 2013, 38 pp. (in Russian).
  32. S. V. Kurmaz, V. Yu. Gak, V. A. Kurmaz, D. V. Konev, Russ. J. Phys. Chem. A, 2018, 92, 329; DOI: https://doi.org/10.1134/S0036024418020152.
  33. M. J. Frisch, G. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. Martin, L. K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revis. B.01, Gaussian, Inc., Wallingford CT, 2009.
  34. J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett., 2003, 91, 146401; DOI: https://doi.org/10.1103/PhysRevLett.91.146401.
  35. V. M. Ignat’ev, N. S. Emel’yanova, N. A. Sanina, Russ. Chem. Bull., 2020, 69, 2265; DOI: https://doi.org/10.1007/s11172-020-3045-7.
  36. U. Koch, P. L. A. Popelie, J. Phys. Chem., 1995, 99, 9747; DOI: https://doi.org/10.1021/j100024a016.
  37. M. C. McCormick, K. Keijzer, A. Polavarapu, F. A. Schultz, M.-H. Baik, J. Am. Chem. Soc., 2014, 136, 8992; DOI: https://doi.org/10.1021/ja5029765.
  38. J. J. Wilson, S. J. Lippard, Inorg. Chem., 2011, 50, 3103; DOI: https://doi.org/10.1021/ic2000816.