Examples



mdbootstrap.com



 
Статья
2021

Reactive Adsorption Desulfurization of Dibenzothiophene in Presence of Mesoporous Adsorbents


O. V. GolubevO. V. Golubev, H. ZhouH. Zhou, E. A. KarakhanovE. A. Karakhanov
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427221050050
Abstract / Full Text

Reactive adsorption desulfurization of a model fuel containing dibenzothiophene with various adsorbents was studied. Adsorbents based on MCM-41 mesoporous material with supported Ni and ZnO phases were prepared and characterized. The desulfurization activity of the material in a fixed-bed flow-through reactor was compared to that of alumina-based adsorbents. The adsorbent based on MCM-41 considerably surpasses its analog on Al2O3 support in the adsorption capacity in reactive adsorption desulfurization of dibenzothiophene at 350°С, pressure of 2 MPa, and feed space velocity of 1 h–1.

Author information
  • Chemical Faculty, Moscow State University, 119991, Moscow, RussiaO. V. Golubev, H. Zhou & E. A. Karakhanov
References
  1. Kampouraki, Z.C., Giannakoudakis, D.A., Triantafyllidis, K.S., and Deliyanni, E.A., Green Chem., 2019, vol. 21, pp. 6685–6698. https://doi.org/10.1039/C9GC03234G
  2. Eseva, E.A., Akopyan, A.V., Anisimov, A.V., and Maximov, A.L., Petrol. Chem., 2020, vol. 60, no. 9, pp. 979–990. https://doi.org/10.1134/S0965544120090091 
  3. Shiraishi, Y., Tachibana, K., Hirai, T., and Komasawa, I., Ind. Eng. Chem. Res., 2002, vol. 41, pp. 4362–4375. https://doi.org/10.1021/ie010618x
  4. Choi, E.S., Roces, S., Dugos, N., Arcega, A., and Wan, M.-W., J. Clean. Prod., 2017, vol. 161, pp. 267–276. https://doi.org/10.1016/j.jclepro.2017.05.072
  5. Maity, U., Basu, J.K., and Sengupta, S., Fuel Process. Technol., 2014, vol. 121, pp. 119–124. https://doi.org/10.1016/j.fuproc.2014.01.012
  6. Patent US 6254766 B1, Publ. 2001.
  7. Zhang, Y., Yang, Y., Lin, F., Yang, M., Liu, T., Jiang, Z., and Li, C., Chin. J. Catal., 2013, vol. 34, pp. 140–145. https://doi.org/10.1016/S1872-2067(11)60513-5
  8. Liu, Y., Pan, Y., Wang, H., Liu, Y., and Liu, C., Chin. J. Catal., 2018, vol. 39, pp. 1543–1551. https://doi.org/10.1016/S1872-2067(18)63085-2
  9. Ullah, R., Bai, P., Wu, P., Liu, B., Subhan, F., and Yan, Z., Micropor. Mesopor. Mater., 2017, vol. 238, pp. 36–45. https://doi.org/10.1016/j.micromeso.2016.02.037
  10. Naranov, E.R., Dement’ev, K.I., Gerzeliev, I.M., Kolesnichenko, N.V., Roldugina, E.A., and Maksimov, A.L., Petrol. Chem., 2019, vol. 59, pp. 247–261. https://doi.org/10.1134/S0965544121030105 
  11. Naranov, E., Golubev, O., Zanaveskin, K., Guseva, A., Nikulshin, P., Kolyagin, Y., Maximov, A., and Karakhanov, E., ACS Omega, 2020, vol. 5, no. 12, pp. 6611–6618. https://doi.org/10.1021/acsomega.9b04373
  12. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T., Pure Appl. Chem., 1985, vol. 57, pp. 603–619. https://doi.org/10.1351/pac198557040603
  13. Silvestre-Albero, J., Sepúlveda-Escribano, A., and Rodríguez Reinoso, F., Micropor. Mesopor. Mater., 2008, vol. 113, pp. 362–369. https://doi.org/10.1016/j.micromeso.2007.11.037
  14. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., and Beck, J.S., Nature, 1992, vol. 359, pp. 710–712. https://doi.org/10.1038/359710a0
  15. Lyu, Y., Sun, Z., Xin, Y., Liu, Y., Wang, C., and Liu, X., Chem. Eng. J., 2019, vol. 374, pp. 1109–1117. https://doi.org/10.1016/j.cej.2019.06.01