Examples



mdbootstrap.com



 
Статья
2020

Effect of the Isopropanol Impurity in the Feed on Catalytic Dehydration of Bioethanol to Ethylene


S. P. BanzaraktsaevaS. P. Banzaraktsaeva, M. A. SurminaM. A. Surmina, V. A. ChumachenkoV. A. Chumachenko, E. V. OvchinnikovaE. V. Ovchinnikova
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427220050134
Abstract / Full Text

Isopropanol is one of the main organic impurities present in bioethanol. Effect of the isopropanol impurity in the feed on catalytic dehydration of 92% ethanol to ethylene over an aluminum oxide catalyst was studied in a gradientless reactor under the conditions of kinetic control at 350–400°С. The maximum permissible concentration of isopropanol in ethanol was found to be 0.7 g L–1, which is equivalent to 0.05 mol % in the gaseous feed. Such isopropanol concentration in the feed does not decrease the catalyst activity and selectivity to ethylene but suppresses formation of acetaldehyde, hydrogen, and butylene, improving the quality of the ethylene product. A bioethanol sample with ~0.15 g L–1 isopropanol content, produced from miscanthus using nitric acid treatment of the biomass, was tested. The process characteristics and ethylene quality obtained by the bioethanol dehydration are slightly higher because of decreased formation of by-products, compared with the dehydration of commercially available pure ethanol.

Author information
  • Boreskov Institute of Catalysis of Siberian Branch of Russian Academy of Sciences, 630090, Novosibirsk, RussiaS. P. Banzaraktsaeva, M. A. Surmina, V. A. Chumachenko & E. V. Ovchinnikova
References
  1. Queiroz, A.U.B. and Collares-Queiroz, F.P., Polym. Rev., 2009, vol. 49, no. 2, pp. 65–78. https://doi.org/10.1080/15583720902834759
  2. Murzin, D.Y. and Simakova, I.L., Catal. Ind., 2011, vol. 3, no. 3, pp. 218–249. https://doi.org/10.1134/S207005041103007X
  3. Skiba, E.A., Baibakova, O.V., Budaeva, V.V., Pavlov, I.N., Vasilishin, M.S., Makarova, E.I., Sakovich, G.V., Ovchinnikova, E.V., Banzaraktsaeva, S.P., Vernikovskaya, N.V., and Chumachenko, V.A., Chem. Eng. J., 2017, vol. 391, pp. 178–186. https://doi.org/10.1016/j.cej.2017.05.182
  4. Baibakova, O.V., Skiba, E.A., Budaeva, V.V., Gismatulina, Yu.A., and Sakovich, G.V., Katal. Prom–sti., 2019, vol. 19, no. 6, pp. 474–481. https://doi.org/10.18412/1816-0387-2019-6-474-481
  5. Maity, S.K., Renew. Sustain. Energy Rev., 2015, vol. 43, pp. 1446–1466. https://doi.org/10.1016/j.rser.2014.08.075
  6. Haro, P., Ollero, P., and Trippe, F., Fuel Process. Technol., 2013, vol. 114, pp. 35–48. https://doi.org/10.1016/j.fuproc.2013.03.024
  7. Habe, H., Shinbo, T., Yamamoto, T., Sato, S., Shimada, H., and Sakaki, K., J. Jpn. Petrol. Inst., 2013, vol. 56, no. 6, pp. 414–422. https://doi.org/10.1627/jpi.56.414
  8. Pang, J., Zheng, M., Sun, R., Song, L., Wang, A., Wang, X., and Zhang, T., Bioresource Technol., 2015, vol. 175, pp. 424–429. https://doi.org/10.1016/j.biortech.2014.10.076
  9. Fahmi, R., Bridgwater, A.V., Donnison, I., Yates, N., and Jones, J.M., Fuel, 2008, vol. 87, no. 7, pp. 1230–1240. https://doi.org/10.1016/j.fuel.2007.07.026
  10. Fahmi, R., Bridgwater, A.V., Darvell, L.I., Jones, J.M., Yates, N., Thain, S., and Donnison, I.S., Fuel, 2007, vol. 86, nos. 10–11, pp. 1560–1569. https://doi.org/10.1016/j.fuel.2006.11.030
  11. Devianto, H., Han, J., Yoon, S.P., Nam, S.W., Lim, T.-H., Oh, I.-H., Hong, S.-A., and Lee, H.-I., Int. J. Hydrogen Energy, 2011, vol. 36, no. 16, pp. 10346–10354. https://doi.org/10.1016/j.ijhydene.2010.09.070
  12. Bilal, M. and Jackson, S.D., Appl. Catal. A, 2017, vol. 529, pp. 98–107. https://doi.org/10.1016/j.apcata.2016.10.020
  13. Mohsenzadeh, A., Zamani, A., and Taherzadeh, M.J., ChemBioEng Rev., 2017, vol. 4, no. 2, pp. 75–91. https://doi.org/10.1002/cben.201600025
  14. Ivanova, A.S., Kinet. Catal., 2012, vol. 53, no. 4, pp. 425–439. https://doi.org/10.1134/S0023158412040039
  15. Chumachenko, V.A. and Ovchinnikova, E.V., Catal. Ind., 2016, vol. 8, no. 2, pp. 134–138. https://doi.org/10.1134/S2070050416020045
  16. Ovchinnikova, E.V., Isupova, L.A., Danilova, I.G., Danilevich, V.V., and Chumachenko, V.A., Russ. J. Appl. Chem., 2016, vol. 89, no. 5, pp. 683–689. https://doi.org/10.1134/S1070427216050013
  17. Skiba, E.A., Budaeva, V.V., Baibakova, O.V., Zolotukhin, V.N., and Sakovich, G.V., Biochem. Eng. J., 2017, vol. 126, pp. 118–125. https://doi.org/10.1016/j.bej.2016.09.003
  18. Gismatulina, Yu.A., Budaeva, V.V., Veprev, S.G., Sakovich, G.V., and Shumny, V.K., Russ. J. Genet. Appl. Res., 2015, vol. 5, no. 1, pp. 60–68. https://doi.org/10.1134/S2079059715010049
  19. Patent RU 2593724, Publ. 2016
  20. Baibakova, O.V., Skiba, E.A., Budaeva, V.V., and Sakovich, G.V., Catal. Ind., 2017, vol. 9, no. 3, pp. 257–263. https://doi.org/10.1134/S2070050417030023
  21. Banzaraktsaeva, S.P., Ovchinnikova, E.V., Danilova, I.G., Danilevich, V.V., and Chumachenko, V.A., Chem. Eng. J., 2019, vol. 374, pp. 605–618. https://doi.org/10.1016/j.cej.2019.05.149
  22. Patent RU 2609263, Publ. 2017.
  23. Banzaraktsaeva, S.P., Ovchinnikova, E.V., Isupova, L.A., and Chumachenko, V.A., Russ. J. Appl. Chem., 2017, vol. 90, no. 2, pp. 169–178. https://doi.org/10.1134/S1070427217020021
  24. Kagyrmanova, A.P., Chumachenko, V.A., Korotkikh, V.N., Kashkin, V.N., and Noskov, A.S., Chem. Eng. J., 2011, vols. 176–177, pp. 188–194. https://doi.org/10.1016/j.cej.2011.06.049
  25. Lee, J., Szanyi, J., and Kwak, J.H., Mol. Catal., 2017, vol. 434, pp. 39–48. https://doi.org/10.1016/j.mcat.2016.12.013
  26. Lee, J., Jang, E.J., and Kwak, J.H., J. Catal., 2017, vol. 345, pp. 135–148. https://doi.org/10.1016/j.jcat.2016.11.025
  27. Christiansen, M.A., Mpourmpakis, G., and Vlachos, D.G., J. Catal., 2015, vol. 323, pp. 121–131. https://doi.org/10.1016/j.jcat.2014.12.024
  28. Kang, M. and Bhan, A., Catal. Sci. Technol., 2016, vol. 6, pp. 6667–6678. https://doi.org/10.1039/C6CY00990E
  29. Bilal, M. and Jackson, S.D., Catal. Sci. Technol., 2014, vol. 4, pp. 40–55. https://doi.org/10.1039/c4cy00560k