Статья
2022

The Increase in Electrical Conductivity and the Appearance of Lipid Pores Induced by Magnetic Nanoparticles CoFe2O4 in Bilayer Lipid Membranes


A. A. Anosov A. A. Anosov , E. A. Korepanova E. A. Korepanova , O. V. Koplak O. V. Koplak , V. A. Kazamanov V. A. Kazamanov , A. S. Derunets A. S. Derunets , R. B. Morgunov R. B. Morgunov
Российский электрохимический журнал
https://doi.org/10.1134/S102319352203003X
Abstract / Full Text

The electrical conductivity of azolectine bilayer lipid membranes is observed to increase 10–40-fold with respect to its background value of 67 ± 13 pS/mm2 upon the addition of cubic CoFe2O4 nanoparticles with the main diagonal of 14 nm (MNP-14) and 27 nm (MNP-27). As the concentration of MNP-14 in the membrane solution increases from 50 to 450 µg/mL, the increase in the membrane conductivity with respect to its background value is nonlinear and can be approximated by the exponential dependence with exponent 2.75. Discrete current pulses are observed in the constant voltage mode for the MNP-14 concentration higher than 250 µg/mL and for all MNP-27 concentrations starting from 50 µg/mL, which points to the appearance of conducting lipid pores.

Author information
  • Sechenov First Moscow State Medical University, 119991, Moscow, Russia

    A. A. Anosov, O. V. Koplak, A. S. Derunets & R. B. Morgunov

  • Kotelnikov Institute of Radio-engineering and Electronics, Russian Academy of Science, 125009, Moscow, Russia

    A. A. Anosov

  • Pirogov Russian National Research Medical University, 117997, Moscow, Russia

    E. A. Korepanova

  • Institute of Problems of Chemical Physics, Russian Academy of Science, 142432, Chernogolovka, Moscow oblast, Russia

    O. V. Koplak & R. B. Morgunov

  • MIREA—Russian Technological University, 119991, Moscow, Russia

    V. A. Kazamanov

References
  1. Mhashal, A.R. and Roy, S., Effect of gold nanoparticle on structure and fluidity of lipid membrane, PLoS ONE, 2014, vol. 9, e114152.
  2. Limbach, L.U., Li, Y., Grass, R.N., Brunner, T.J., Hintermann, M.A., Muller, M., Gunther, D., and Stark, W.J., Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations, Environ. Sci. Technol., 2005, vol. 39, p. 9370.
  3. Yang, K. and Ma, Y., Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer, Nat. Nanotechnol., 2010, vol. 5, p. 579.
  4. Gupta, R., Badhe, Y., Mitragotri, S., and Rai, B., Permeation of nanoparticles across intestinal lipid membrane: dependence on shape and surface chemistry studied through molecular simulations, Nanoscale, 2020, vol. 12, p. 6318.
  5. Farnoud, M. and Nazemidashtarjandia, S., Emerging investigator series: interactions of engineered nanomaterials with the cell plasma membrane; what have we learned from membrane models, Environ. Sci. Nano, 2019, vol. 6, p. 13.
  6. Wang, B., Zhang, L., Bae, S.C., and Granick, S., Nanoparticle-induced surface reconstruction of phospholipid membranes, PNAS, 2008, vol. 105, p. 18171.
  7. Park, B.J., Choi, K.H., Nam, K.C., et al., Photodynamic anticancer activity of CoFe2O4 nanoparticles conjugated with hematoporphyrin, J. Nanosci. Nanotechnol., 2015, vol. 15, p. 7900.
  8. Lambert, I. and Joyer, F., Solubility of cobalt in primary circuit solutions: Proc 6, in BNES International Conference of Water Chemistry of Nuclear Reactor Systems, Bournemouth: Thomas Telford, 1992, vol. 1, p. 196.
  9. Kim, D., Nikles, D.E., Johnson, D.T., and Brazel, C.S., Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia, J. Magnetism Magnetic Mater., 2008, vol. 320, p. 2390.
  10. Tabish, T.A., Ashiq, M.N., Ullah, M.A., Iqbal, S., Latif, M., Ali, M., Ehsan, M.F., and Iqbal, F., Biocompatibility of cobalt iron oxide magnetic nanoparticles in male rabbits, Korean J. Chem. Eng., 2015, vol. 32, p. 1.
  11. Loan, N.T.T., Lan, N.T.H., Hang, N.T.T., Hai, N.Q., Anh, D.T.T., Hau, V.T., Tan, L.V., and Tran, T.V., CoFe2O4 nanomaterials: effect of annealing temperature on characterization, magnetic, photocatalytic, and photo-Fenton properties, Processes, 2019, vol. 7, p. 885.
  12. Urban, P., Kirchner, S.R., Mühlbauer, C., Lohmüller, T., and Feldmann, J., Reversible control of current across lipid membranes by local heating, Sci. Rep., 2016, vol. 6, p. 22686.
  13. Koplak, O.V., Kunitsyna, E.I., Allayarov, R.S., Mangin, S., Granovskii, N.V., and Morgunov, R.B., Magnetization reversal of ferromagnetic CoFeB films and CoFeB/Ta/CoFeB heterostructures in the stray field of Fe/Fe3O4, J. Exp. Theor. Phys., 2020, vol. 131, p. 607.
  14. Antonov, V.F., Smirnova, E.Y., Anosov, A.A., Norik, V.P., and Nemchenko, O.Y., PEG blocking of single pores arising on phase transitions in unmodified lipid bilayers, Biophysics, 2008, vol. 53, p. 390.
  15. Antonov, V.F., Anosov, A.A., Norik, V.P., and Smirnova, E.Y., Soft perforation of planar transition from the liquid crystalline to gel state, Eur. Biophys. J., 2005, vol. 34, p. 155.
  16. Hianik, T., Electrostriction and dynamics of solid supported lipid films, Rev. Mol. Biotechnol., 2000, vol. 74, p. 189.