The electrochemical polymerization of 3,4-ethylenedioxythiophene (EDOT) in the presence of the salt and acid forms of polymer sulfonates with different polymer-chain flexibility is studied. The dependence of the rate of synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT) on the nature of polysulfonate counterion that determines the type and distribution density of the charge in the polyelectrolyte chain is demonstrated. For the Н+ form of a rigid-chain polysulfonate, it is found that the specific interactions between parts of its macromolecules lead to destabilization of EDOT•+ radical cations, hinder the growth of PEDOT chains, and favor the formation of structures with the high degree of charge localization.