Examples



mdbootstrap.com



 
Статья
2017

Effects of Mg, Al Co-doping into Mn site on electrochemical performance of LiNi0.5Co0.2Mn0.3O2


Yuming Chen Yuming Chen , Zhen Zhang Zhen Zhang
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517040048
Abstract / Full Text

In order to study the influence of multiple ions doping into single-site on the structure and electrochemical properties of Ni-rich layered-structure cathode material LiNi0.5Co0.2Mn0.3O2, the coprecipitation of hydroxides was applied to synthesize Mg, Al co-doped cathode material LiNi0.5Co0.2Mn0.3–x Mg1/2x Al1/2x O2 (x = 0.00, 0.01, 0.02, 0.04) in this paper. Morphology and structure, kinetic parameter, impedance and electrochemical performance of the material were respectively characterized by SEM, XRD, CV, EIS and galvanostatic charge/discharge test. The results of comprehensive analysis showed that the properties of material were improved obviously when the amount of doping was 0.02. At this amount of doping, the corresponding material has smaller cation mixing, higher hexagonal ordering of layered-structure, larger Li+ ion diffusion coefficients which are 2.444 × 10–10 and 4.186 × 10–10 cm2 s–1 for Li+ intercalation and deintercalation respectively, smaller impedance which is 33.93 Ω, higher specific capacity of first-discharge which is 168.01 mA h g–1 and higher capacity retention rate which is up to 95.06% after 20 cycles at 0.5 C (100 mA g–1).

Author information
  • Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510640, China

    Yuming Chen & Zhen Zhang

  • School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China

    Yuming Chen & Zhen Zhang

References
  1. Terada, N., Yanagi, T., Arai, S., et al., J. Power Sources, 2001, vol. 100, p. 80.
  2. Liu, W., Wang, M., Gao, X.L., et al., J. Alloy Compd., 2012, vol. 543, p. 181.
  3. Shi, S.J., Tu, J.P., Tang, Y.Y., et al., J. Power Sources, 2013, vol. 225, p. 338.
  4. Kim, G.H., Myung, S.T., Kim, H.S., et al., Electrochim. Acta, 2006, vol. 51, p. 2447.
  5. Liu, D.T., Wang, Z.X., and Chen, L.Q., Electrochim. Acta, 2006, vol. 51, p. 4199.
  6. Weng, Y.Q., Xu, S.M., and Huang, G.Y., J. Hazard Mater., 2013, vol. 246, p. 163.
  7. Ding, Y.H., Zhang, P., and Jiang, Y., Solid State Ionics, 2007, vol. 178, p. 967.
  8. Shin, H.S., Shin, D., and Sun, Y.K., Electrochim. Acta, 2006, vol. 52, p. 1477.
  9. Huang, Y.Y., Zhou, H.H., and Chen, J.T., Acta Phys. Chim. Sin., 2005, vol. 21, p. 725.
  10. Noh, M. and Cho, J., J. Electrochem. Soc., 2013, vol. 160, p. A105.
  11. Wu, K., Wang, F., and Gao, L., Electrochim. Acta, 2012, vol. 75, p. 393.
  12. Zeng, Y.W., J. Power Sources, 2008, vol. 183, p. 316.
  13. Li, J.B., Xu, Y.L., and Xing, L.L., Acta Phys. Chim. Sin., 2011, vol. 27, p. 2593.
  14. Xia, H., Lu, L., and Lai, M.O., Electrochim. Acta, 2009, vol. 54, p. 5986.
  15. Aurbach, D., Ein-Eli, Y., and Markovsky, B., J. Electrochem. Soc., 1995, vol. 142, p. 2882.
  16. Aurbach, D., Levi, M.D., and Levi, E., J. Electrochem. Soc., 1998, vol. 145, p. 3024.
  17. Aurbach, D., Gamolsky, K., and Markovsky, B., J. Electrochem. Soc., 2000, vol. 147, p. 1322.