Статья
2018

The Electric Conductivity of Poly- and Singlecrystaline Y2O3 in Oxidative Atmosphere


A. I. Kovrova A. I. Kovrova , V. P. Gorelov V. P. Gorelov , A. V. Kuz’min A. V. Kuz’min , B. A.-T. Melekh B. A.-T. Melekh
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518090057
Abstract / Full Text

Comparative impedance measurements of electric conductivity of nominally undoped yttria are carried out for samples with sharply differing morphologies, namely, single crystals and porous ceramics (with a density of 67%) over a 980–350°С temperature range in air atmosphere of different humidity (рН2О= 40–3000 Pa). Dilatometric analysis of possible structure changes is carried out. The effects of uncontrolled impurities on the yttria defect structure are analyzed.

Author information
  • Institute of High-Temperature Electrochemistry, Ural Division, Russian Academy of Sciences, Yekaterinburg, 620137, Russia

    A. I. Kovrova, V. P. Gorelov & A. V. Kuz’min

  • Ural Federal University named after the first President of Russia B.N. Yeltsin, Yekaterinburg, 620002, Russia

    A. V. Kuz’min

  • Ioffe Physicotechnical Institute, Russian Academy of Sciences, St. Petersburg, 194021, Russia

    B. A.-T. Melekh

References
  1. Bhavani, G., Ganesan, S., Selvasekarapandian, S., Monisha, S., and Premalatha, M., Synthesis and electrical characterization of zinc-doped yttrium oxide, Ionics, 2016, vol. 22, p. 581.
  2. Li, J., Pan, Y., Zeng, Y., Liu, W., Jiang, B., and Guo, J., The History, development and future prospects for laser ceramics: a review, Int. J. Refract. Met. Hard Mater., 2013, vol. 39, p. 44.
  3. Lupei, V., Lupei, A., and Ikesue, A., Single crystal and transparent ceramic Nd-doped oxide laser materials: a comparative spectroscopic investigation, J. Alloys Compounds, 2004, vol. 380, p. 61.
  4. Graeve, O.A., Varma, S., and Rojas-George, G., Synthesis and characterization of luminescent yttrium oxide doped with Tm and Yb, J. Amer. Ceram. Soc, 2006, vol. 89, p. 926.
  5. Norby, T. and Kofstad, P., Electrical conductivity and defect structure of Y2O3 as a function of water vapor pressure, J. Amer. Ceram. Soc., 1984, vol. 67, p. 786.
  6. Norby, T. and Kofstad, P., Proton and native-ion conductivities in Y2O3 at high temperatures, Solid State Ionics, 1986, vol. 20, p. 169.
  7. Norby, T. and Kofstad, P., Direct-current conductivity of Y2O3 as a function of water vapor pressure, J. Amer. Ceram. Soc., 1986, vol. 69, p. 780.
  8. Norby, T. and Kofstad, P., Electrical conductivity of Y2O3 as a function of oxygen partial pressure in wet and dry atmospheres, J. Amer. Ceram. Soc., 1968, vol. 69, p. 784.
  9. Norby, T., Wideroe, M., Glockner, R., and Larring, Y., Hydrogen in oxides, Dalton Trans., 2004. vol. 19, p. 3015.
  10. Gorelov, V.P., Balakireva, V.B., Baikov, Yu.M., and Shalkova, E.K., Defective structure, electrical conductivity and hydrogen content in YO1.5, doped with CaO, in a humid atmosphere, Russ. J. Electrochem., 1997, vol. 33, p. 47.
  11. Hanic, F., Hartmanova, M., Knab, G., Urusovskaya, A, and Bagdasarov, K., Real structure of undoped Y2O3 single crystals, Acta Cryst., 1984, vol. 40, p. 76.
  12. Traqueia, L.S.M., Marques, F.M.B., and Kharton, V.V., Oxygen ion conduction in oxide materials: selected examples and basic mechanisms, Bol. Soc. Esp. Ceram., 2006, vol. 45, p. 115.
  13. Volchenkova, Z.S. and Zubankova, D.S., Electrical Conductivity Y2O3, Inorgan. Materials, 1976, vol. 12, p. 1695.
  14. Tallan, N.M. and Vest, R.W., Electrical properties and defect structure of Y2O3, J. Amer. Ceram. Soc., 1966, vol. 49, p. 401.
  15. Shafer M. W. and Roy Rustum, Rare-earth polymorphism and phase equilibria in rare-earth oxide-water systems, J. Amer. Ceram. Soc., 1959, vol. 42, p. 563.
  16. Belyakov, A.V., Lemeshev, D.O., Lukin, E.S., Val’nin, G.P., and Grinberg, E.E., Yttrium oxide based translucent ceramics with carbonate and alkoxide precursors, Glass and Ceramics, 2006, vol. 8, p. 17.
  17. Chalyi, V.P., Metal hydroxides, Kiev: Naukova Dumka, 1972.
  18. Suzuki, Y., Phase transition temperature of fluorite-type ZrO2–Y2O3 solid solutions containing 8–44 mol % Y2O3, Solid State Ionics, 1995, vol. 81, p. 211.
  19. Kuzmin, A.V., Gorelov, V.P., Melekh, B.A.-T., Glerup, M., and Poulsen, F.W., Phase transitions in undoped BaCeO3, Solid State Ionics, 2003, vol. 162/163, p. 13.
  20. Kuroda, Y., Hamano, H., Mori, T., Yoshikawa, Y., and Nagao, M., Specific adsorption behavior of water on an Y2O3 surface, Langmuir, 2000, vol. 16, p. 6937.
  21. Structural and electrochemical properties of physisorbed and chemisorbed water layers on the ceramic oxides Y2O3, YSZ and ZrO2, YSZ and ZrO2, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 16428.
  22. Putilov, L.P., Tsidilkovski, V.I., Varaksin, A.N., and Fishman, A.Ya., Thermodynamics of defect formation and hydration of Y2O3, Defect Diffus. Forum, 2012, vol. 326–328, p. 126.