Examples



mdbootstrap.com



 
Статья
2018

A Voltammetric Sensor Based on Spinel-Structured Copper Ferrite Nanoparticles Multiwalled Carbon Nanotubes Modified Carbon Paste Electrode for Determination of Dacarbazine


Foroozan HasanpourForoozan Hasanpour, Masoumeh TaeiMasoumeh Taei, Masoud FouladgarMasoud Fouladgar
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517110040
Abstract / Full Text

A simple and sensitive method was used to develop a novel sensor for determination of dacarbazine on the surface of multi-walled carbon nanotubes/CuFe2O4 nanoparticles modified carbon paste electrode (MWCNTs/CuFe2O4/CPE). Cyclic voltammetry, differential pulse voltammetry, chronoamperometry, and electrochemical impedance spectroscopy were used to investigate the electrochemical behavior of dacarbazine at the chemically modified electrode. According to the results, MWCNTs/CuFe2O4/CPE showed high electrocatalytic activity for dacarbazine oxidation, producing a sharp oxidation peak current at about +0.80 vs. Ag/AgCl reference electrode at pH 5.0. The peak current was linearly dependent on dacarbazine concentration over the range of 0.10–76.0 μmol L–1 with the detection limit (3σ) of 0.08 μmol L−1. In addition, chronoamperometry was also used to determine diffusion coefficient of dacarbazine at MWCNTs/CuFe2O4/CPE.

Author information
  • Department of Chemistry, Payame Noor University, Tehran, PO BOX, 19395-4697, IranForoozan Hasanpour
  • Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, IranMasoumeh Taei & Masoud Fouladgar
References
  1. Enna, S.J. and Bylund, D.B., The Comprehensive Pharmacology Reference, Elsevier Inc., 2008.
  2. Miranda Ordieres, A.J., Costa Garcia, A., and Tungn Blanco, P., An electroanalytical study of the anticancer drug dacarbazine, Anal. Chim. Acta, 1987, vol. 202, p.141.
  3. Barreíra Rodriguez, J.R., Garcia, A.C., Miranda Ordieres, A.J, and Tuñón Blanco, P., Electrochemical oxidation of dacarbazine and its major metabolite (AIC) on carbon electrodes, Electroanalysis, 1989, vol. 1, p.529.
  4. Shetty, B.V., Schowen, R.L., Slavik, M., and Riley, C.M., Degradation of dacarbazine in aqueous solution, J. Pharm. Biomed. Anal., 1992, vol. 10, p.675.
  5. Safgren, S.L., Reid, J.M., Rios, R., and Ames, M.M., Validated high-performance liquid chromatographic assay for simultaneous determination of dacarbazine and the plasma metabolites 5-(3-hydroxymethyl-3-methyl-1-triazeno)imidazole-4-carboxamide and 5-(3-methyl-1-triazeno)imidazole-4-carboxamide, J. Chromatogr. B, 2001, vol. 754, p.91.
  6. Malik, M.Z., Ahmad, M., and Muahammad, S., Rapid and simultaneous determination of adriamycin, bleomycin, vinblastine and dacarbazine in plasma of hodgkin’s lymphoma patients by a reversed phase hplc method, J. Chil. Chem. Soc., 2013, vol. 58, p. 1674.
  7. Temerk, Y.M, Kamal, M.M., Ibrahim, M.S., Ibrahim, H.S.M., and Schuhmann, W., Electrochemical behaviour of the anticancer dacarbazine-Cu2+ complex and its analytical applications, Electroanalysis, 2011, vol. 23, p. 1638.
  8. Fouladgar, M., Direct voltammetric determination of dobutamine in pharmaceutical samples using multiwall carbon nanotubes paste electrode, ECS Solid State Lett., 2015, vol. 4, p. M15.
  9. Mohammadzadeh, S. and Fouladgar, M., Electrocatalytic oxidation and determination of homocysteine at nanotubes-modified carbon paste electrode using dopamine as a mediator, J. Serb. Chem. Soc., 2013, vol. 78, p. 1595.
  10. Karimi-Maleh, H., Rostami, S., Gupta, V.K., and Fouladgar, M., Evaluation of ZnO nanoparticle ionic liquid composite as a voltammetric sensing of isoprenaline in the presence of aspirin for liquid phase determination, J. Mol. Liq., 2015, vol. 201, p.102.
  11. Fouladgar, M., A new sensor for determination of nalbuphine using NiO/functionalsingle walled carbon nanotubes nanocomposite and ionic liquid, Sensor. Actuat. B, 2016, vol. 230, p.456.
  12. Fouladgar, M., Application of ZnO nanoparticle/ion liquid modified carbon paste electrode for determination of isoproterenol in pharmaceutical and biological samples, J. Electrochem. Soc., 2016, vol. 163, p. B38.
  13. Yang, H., Yan, J., Lu, Z., Cheng, X., and Tang, Y., Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation, J. Alloy. Compd., 2009, vol. 476, p.715.
  14. Padampalle, A.S., Suryawanshi, A.D., Navarkhele, V.M., and Birajdar, D.S., Structural and magnetic properties of nanocrystalline copper ferrites synthesized by solgel autocombustion method, Int. J. Recent. Dev. Eng. Technol., 2013, vol. 2, p.19.
  15. Douglass, E.F., Jr., Driscoll, P.F., Liu, D., Burnham, N.A., Lambert, C.R., and McGimpsey, W.G., Effect of electrode roughness on the capacitive behavior of selfassembled monolayers, Anal. Chem., 2008, vol. 80, p.7670.
  16. Afsharmanesh, E., Karimi-Maleh, H., Pahlavan, A., and Vahedi, J., Electrochemical behavior of morphine at ZnO/CNT nanocomposite room temperature ionic liquid modified carbon paste electrode and its determination in real samples, J. Mol. Liq., 2013, vol. 181, p. 8.