The Effect of Electrochemical and Gas Phase Activation of High Surface Area Carbon Black Ketjen Black EC 600 DJ on Its Surface Composition, Electrochemical Capacitance, and Stability

N. V. Maltseva N. V. Maltseva , V. A. Golovin V. A. Golovin , Yu. O. Chikunova Yu. O. Chikunova , E. N. Gribov E. N. Gribov
Российский электрохимический журнал
Abstract / Full Text

The effect of electrochemical and gas-phase activation of high-surface-area carbon black Ketjen Black EC 600 DJ on its stability and electrochemical capacitance is studied. The electrochemical activation is carried out according to the “start–stop” protocol (1–1.5 V, 0.5 V/s). The stability of samples is assessed based on variation of their effective resistance (based on the results of cyclic voltammetry (CVA)) and electrochemical capacitance (based on CVA and galvanostatic data) with the cycle number. The changes in the texture and surface properties of activated samples are studied by the methods of nitrogen low-temperature adsorption and X-ray photoelectron spectroscopy. The gas-phase activation of high-surface-area carbon black Ketjen Black EС 600 DJ is shown to impair its stability, while the electrochemical oxidation of carbonblack samples leads to a considerable (two-fold) increase in their electrochemical capacitance.

Author information
  • Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia

    N. V. Maltseva, V. A. Golovin, Yu. O. Chikunova & E. N. Gribov

  • Novosibirsk State University, Novosibirsk, 630090, Russia

    V. A. Golovin, Yu. O. Chikunova & E. N. Gribov

  1. Wang, Y., Chen, K.S., Mishler, J., Cho, S.C., and Adroher, X.C., A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research, Appl. Energy, 2011, vol. 88, p.981.
  2. Yoshida, T. and Kojima, K., Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society, Electrochem. Soc. Interface, 2015, vol. 24, p.45.
  3. Young, A.P., Stumper, J., and Gyenge, E., Characterizing the structural degradation in a PEMFC cathode catalyst layer: carbon corrosion, J. Electrochem. Soc., 2009, vol. 156, p.913.
  4. Marcu, A., Toth, G., Kundu, S., Colmenares, L.C., and Behm, R.J., Ex situ testing method to characterize cathode catalysts degradation under simulated startup/shut-down conditions—A contribution to polymer electrolyte membrane fuel cell benchmarking, J. Power Sources, 2012, vol. 215, p.266.
  5. Shao-Horn, Y., Ferreira, P., Io, G.J., Morgan, D., Gasteiger, H., and Makharia, R., Coarsening of Pt nanoparticles in proton exchange membrane fuel cells upon potential cycling, ECS Trans., 2006, vol. 1, p.185.
  6. Zana, A., Speder, J., Roefzaad, M., Altmann, L., Baumer, M., and Arenz, M., Probing degradation by ILTEM: The influence of stress test conditions on the degradation mechanism, J. Electrochem. Soc., 2013, vol. 160, p.608.
  7. Kang, J., Jung, D.W., Park, S., Lee, J.-H., Ko, J., and Kim, J., Accelerated test analysis of reversal potential caused by fuel starvation during PEMFCs operation, Int. J. Hydrogen Energy, 2010, vol. 35, p. 3727.
  8. Siroma, Z., Ishii, K., Yasuda, K., Inaba, M., and Tasaka, A., Stability of platinum particles on a carbon substrate investigated by atomic force microscopy and scanning electron microscopy, J. Power Sources, 2007, vol. 171, p.524.
  9. Ettingshausen, F., Kleemann, J., Marcu, A., Toth, G., Fuess, H., and Roth, C., Dissolution and migration of platinum in PEMFCs investigated for start/stop cycling and high potential degradation, Fuel Cells, 2011, vol. 11, p.238.
  10. Schulenburg, H., Schwanitz., B, Krbanjevic, J., Linse, N., Scherer, G.G., and Wokaun, A., Quantification of platinum deposition in polymer electrolyte fuel cell membranes, Electrochem. Commun., 2011, vol. 13, p.921.
  11. Ball, S.C., Hudson, S.L., Thompsett, D., and Theobald, B., An investigation into factors affecting the stability of carbons and carbon supported platinum and platinum/cobalt alloy catalysts during 1.2 V potentiostatic hold regimes at a range of temperatures, J. Power Sources, 2007, vol. 171, p.18.
  12. Maass, S., Finsterwalder, F., Frank, G., Hartmann, R., and Merten, C., Carbon support oxidation in PEM fuel cell cathodes, J. Power Sources, 2008, vol. 176, p.444.
  13. Dubau, L., Castanheira, L., Maillard, F., Chatenet, M., Lottin, O., Maranzana, G., Dillet, J., Lamibrac, A., Perrin, J.-C., Moukheiber, E., ElKaddouri, A., De Moor, G., Bas, C., Flandin, L., and Caqué, N., A review of PEM fuel cell durability: materials degradation, local heterogeneities of aging and possible mitigation strategies, WIREs Energy Environ., 2014, vol. 3, p.540.
  14. Gribov, E.N., Kuznetsov, A.N., Voropaev, I.N., Golovin, V.A., Simonov, P.A., Romanenko, A.V., and Okunev, A.G., Analysis of the corrosion kinetic of Pt/C catalysts prepared on different carbon supports under the “start–stop” cycling, Electrocatal., 2016, vol. 7, p.159.
  15. Borup, R., Meyers, J., Pivovar, B., Kim, Y.S., Mukundan, R., Garland, N., and Zelenay, P., Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev., 2007, vol. 107, p. 3904.
  16. Fernández, J.A., Morishita, T., Toyoda, M., Inagaki, M., Stoeckli, F., and Centeno, T.A., Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors, J. Power Sources, 2008, vol. 175, p.675.
  17. Vervikishko, D.E., Yanilkin, I.V., Atamanyuk, I.N., Sametov, A.A., Shkol’nikov, E.I., Dobele, G.V., and Volperts, A., Activated carbon for supercapacitor electrodes with an aqueous electrolyte, High Temp., 2015, vol. 53, p.758.
  18. Hu, C.C., Wang, C.C., and Chang, K.H., A comparison study of the capacitive behavior for sol–gel-derived and co-annealed ruthenium–tin oxide composites, Electrochim. Acta, 2007, vol. 52, p. 2691.
  19. Ryu, K.S., Kim, K.M., Park, N.G., Park, Y.J., and Chang, S.H., Symmetric redox supercapacitor with conducting polyaniline electrodes, J. Power Sources, 2002, vol. 103, p.305.
  20. Clemente, A., Panero, S., Spila, E., and Scrosati, B., Solid-state, polymer-based, redox capacitors, Solid State Ionics, 1996, vol. 85, p.273.
  21. Laforgue, A., Simon, P., Sarrazin, C., and Fauvarque, J.F., Polythiophene-based supercapacitors, J. Power Sources, 1999, vol. 80, p.142.
  22. Fan, L.Z. and Maier, J., High-performance polypyrrole electrode materials for redox supercapacitors, Electrochem. Commun., 2006, vol. 8, p.937.
  23. Fisher, R.A., Watt, M.R., and Ready, W.J., Functionalized carbon nanotube supercapacitor electrodes: A review on pseudocapacitive materials, ECS J. Solid State Sci. Technol., 2013, vol. 2, p. 3170.
  24. González, A., Goikolea, E., Barrena, J.A., and Mysyk, R., Review on supercapacitors: technologies and materials, Renewable Sustainable Energy Rev., 2016, vol. 58, p. 1189.
  25. Brunauer, S., Emmett, P.H., and Teller, E., Adsorption of gases in multimolecular layers, J. Amer. Chem. Soc., 1938, vol. 60, p.309.
  26. Mel’gunov, M.S. and Ayupov, A.B., Direct method for evaluation of BET adsorbed monolayer capacity, Microporous Mesoporous Mater., 2017, vol. 243, p.147.
  27. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution, Pure Appl. Chem., 2015, vol. 87, p. 1051.
  28. Llewellyn, P.L., Rodriquez-Reinoso, F., Rouqerol, J., and Seaton, N., Is the BET equation applicable to microporous adsorbents?, Stud. Surf. Sci. Catal., 2007, vol. 160 p.49.
  29. Ohma, A., Shinohara, K., Iiyama, A., Yoshida, T., and Daimaru, A., Membrane and catalyst performance targets for automotive fuel cells by FCCJ membrane, catalyst, MEA WG, ECS Trans., 2011, vol. 41, p.775.
  30. Gribov, E.N., Kuznetzov, A.N., Golovin, V.A., Voropaev, I.N., Romanenko, A.V., and Okunev, A.G., Degradation of Pt/C catalysts in start–stop cycling tests, Russ. J. Electrochem., 2014, vol. 50, p. 700.]
  31. Li, Sh.-M., Yang, Sh.-Yi, Wang, Yu.-Sh., Tsai, H.P., Tien, H.W., Hsiao, Sh.-T., Liao, W.-H., Chang, Ch.-L., Ma, Ch.-Ch.M., and Hu, Ch.-Ch., N-doped structures and surface functional groups of reduced graphene oxide and their effect on the electrochemical performance of supercapacitor with organic electrolyte, J. Power Sources, 2015, vol. 278, p.218.
  32. Mai, L.Q., Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance, Nature Commun., 2013, vol.4.
  33. Tarasevich, M.R., Bogdanovskaya, V.A., and Zagudaeva, N.M., Redox reactions of quinones on carbon materials., J. Electroanal. Chem., 1987, vol. 223, p.161.
  34. Regisser, F., Lavoie, M.-A., Champagne, G.Y., and Belanger, D., Randomly oriented graphite electrode. Part 1. Effect of electrochemical pretreatment on the electrochemical behavior and chemical composition of the electrode, J. Electroanal. Chem., 1996, vol. 415, p.47.
  35. Gribov, E.N., Maltseva, N.V., Golovin, V.A., and Okunev, A.G., A simple method for estimating the electrochemical stability of the carbon materials, Int. J. Hydrogen Energy, 2016, vol. 41, p. 18207.