New Gas-Diffusion Electrode Based on Heterocyclic Microporous Polymer PIM-1 for High-Temperature Polymer Electrolyte Membrane Fuel Cell

I. I. Ponomarev I. I. Ponomarev , K. M. Skupov K. M. Skupov , Iv. I. Ponomarev Iv. I. Ponomarev , D. Yu. Razorenov D. Yu. Razorenov , Yu. A. Volkova Yu. A. Volkova , V. G. Basu V. G. Basu , O. M. Zhigalina O. M. Zhigalina , S. S. Bukalov S. S. Bukalov , Yu. M. Volfkovich Yu. M. Volfkovich , V. E. Sosenkin V. E. Sosenkin
Российский электрохимический журнал
Abstract / Full Text

Polymer of intrinsic microporosity PIM-1 was used for electrospun polymer nanofiber producing. After pyrolysis, the obtained nanofibers, in a form of entire mat, were used as a support for cathode electrocatalyst for high-temperature polymer electrolyte membrane fuel cell on polymer polybenzimidazole membrane. The material was characterized by the methods of standard contact porosimetry, Raman spectroscopy and scanning electron microscopy. The I-V curves for membrane-electrode assembly suggest a possibility of using the carbon material for electrodes in a fuel cell on polymer membrane.

Author information
  • Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991, Moscow, Russia

    I. I. Ponomarev, K. M. Skupov, Iv. I. Ponomarev, D. Yu. Razorenov, Yu. A. Volkova & S. S. Bukalov

  • Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia

    V. G. Basu & O. M. Zhigalina

  • National Research Centre “Kurchatov Institute,”, 123182, Moscow, Russia

    V. G. Basu

  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia

    Yu. M. Volfkovich & V. E. Sosenkin

  1. Li, Q., Aili, D., Hjuler, H.A., and Jensen, J.O., High Temperature Polymer Electrolyte Membrane Fuel Cells, Approaches, Status and Perspectives, Cham: Springer, 2016.
  2. Zhang, J., PEM Fuel Cell Electrocatalyst and Catalyst Layers, London: Springer, 2008.
  3. Zeis, R., Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells, Beilstein J. Nanotechnol., 2015, vol. 6, p. 68.
  4. Araya, S.S., Zhou, F., Liso, V., Sahlin, S.L., Vang, J.R., Thomas, S., Gao, X., Jeppesen, C., and Kaer, S.K., A comprehensive review of PBI-based high temperature PEM fuel cells, Int. J. Hydrogen Energy, 2016, vol. 41, p. 21310.
  5. Chandan, A., Hattenberger, M., El-kharouf, A., Du, S., Dhir, A., Self, V., Pollet, B.G., Ingram, A., and Bujalski, W., High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – A review, J. Power Sources., 2013, vol. 231, p. 264.
  6. Steele, B.C. and Heinzel, A., Materials for fuel-cell technologies, Nature, 2001, vol. 414, p. 345.
  7. Borup, R., Meyers, J., Pivovar, B., Kim, Y.S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K., Zawodzinski, T., Boncella, J., McGrath, J.E., Inaba, M., Miyatake, K., Hori, M., Ota, K., Ogumi, Z., Miyata, S., Nishukata, A., Siroma, Z., Uchimoto, Y., Yasuda, K., Kimijima, K., and Iwashita, N., Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev., 2007, vol. 107, p. 3904.
  8. Debe, M.K., Electrocatalyst approaches and challenges for automotive fuel cells, Nature, 2012, vol. 486, p. 43.
  9. Wang, Y., Chen, K.S., Mishler, J., Cho, S.C., and Adroher, X.C., A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. Energy, 2011, vol. 88, p. 981.
  10. Zhang, L., Aboagye, A., Kelkar, A., Lai, C., and Fong, H., A review: carbon nanofibers from electrospun polyacrylonitrile and their applications, J. Mater. Sci., 2014, vol. 49, p. 463.
  11. Tenchurin, T.Kh., Krasheninnikov, S.N., Orekhov, A.S., Chvalun, S.N., Shepelev, A.D., Belousov, S.I., and Gulyaev, A.I., Rheological features of fiber spinning from polyacrylonitrile solutions in an electric field. Structure and properties, Fibre Chem., 2014, vol. 46, p. 151.
  12. Dong, Z., Kennedy, S.J., and Wu, Y., Electrospinning materials for energy-related applications and devices, J. Power Sources., 2011, vol. 196, p. 4886.
  13. Yusof, N. and Ismail, A.F., Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review, J. Anal. Appl. Pyrolysis., 2012, vol. 93, p. 1.
  14. Zhigalina, V.G., Zhigalina, O.M., Ponomarev, I.I., Skupov, K.M., Razorenov, D.Y., Ponomarev, I.I., Kiselev, N.A., and Leitinger, G., Electron microscopy study of new composite materials based on electrospun carbon nanofibers, CrystEngComm, 2017, vol. 19, p. 3792.
  15. Ponomarev, I.I., Filatov, Y.N., Ponomarev, Iv.I., Filatov, I.Y., Razorenov, D.Y., Skupov, K.M., Zhigalina, O.M., and Zhigalina,V.G., Electroforming on nitrogen-containing polymers and derived nonfabric nanofibre carbon materials, Fibre Chem., 2017, vol. 49, p. 183.
  16. Ponomarev, I.I., Skupov, K.M., Razorenov, D.Yu., Zhigalina, V.G., Zhigalina, O.M., Ponomarev, Iv.I., Volkova, Yu.A., Kondratenko, M.S., Bukalov, S.S., and Davydova, E.S., Electrospun nanofiber pyropolymer electrodes for fuel cell on polybenzimidazole membranes, Russ. J. Electrochem., 2016, vol. 52, p. 735.
  17. Ponomarev, I.I., Ponomarev, Iv.I., Filatov, I.Yu., Filatov, Yu.N., Razorenov, D.Yu., Volkova, Yu.A., Zhigalina, O.M., Zhigalina, V.G., Grebenev V.V., and Kiselev, N.A., Design of electrodes based on a carbon nanofiber nonwoven material for the membrane electrode assembly of a polybenzimidazole-membrane fuel cell, Dokl. Phys. Chem., 2013, vol. 448, p. 23.
  18. Skupov, K.M., Ponomarev, I.I., Razorenov, D.Yu., Zhigalina, V.G., Zhigalina, O.M., Ponomarev, Iv.I., Volkova, Yu.A., Volfkovich, Yu.M., and Sosenkin, V.E., Carbon nanofiber paper cathode modification for higher performance of phosphoric acid fuel cells on polybenzimidazole membrane, Russ. J. Electrochem., 2017, vol. 53, p. 728.
  19. Skupov, K.M., Ponomarev, I.I., Razorenov, D.Y., Zhigalina, V.G., Zhigalina, O.M., Ponomarev, Iv.I., Volkova, Y.A., Volfkovich, Y.M., and Sosenkin, V.E., Carbon nanofiber paper electrodes based on heterocyclic polymers for high temperature polymer electrolyte membrane fuel cell, Macromol. Symp., 2017, vol. 375, p. 1600188.
  20. Ponomarev, I.I., Razorenov, D.Yu., Ponomarev, Iv.I., Volkova, Yu.A., and Skupov, K.M., Synthesis and studies of polybenzimidazoles for high-temperature fuel cell, Russ. J. Electrochem., 2014, vol. 50, p. 694.
  21. Kondratenko, M.S., Ponomarev, I.I., Gallyamov, M.O., Razorenov, D.Y., Volkova, Y.A., Kharitonova, E.P., and Khokhlov, A.R., Novel composite Zr/PBI-O-PhT membranes for HT-PEFC applications, Beilstein J. Nanotechnol., 2013, vol. 4, p. 481.
  22. Low, Z.-X., Budd, P.M., McKeown, N.B., and Patterson, D.A., Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers, Chem. Rev., 2018, vol. 118, p. 5871.
  23. McKeown, N.B., The synthesis of polymers of intrinsic microporosity (PIMs), Sci. China Chem., 2017, vol. 60, p. 1023.
  24. Park, H.B., Kamcev, J., Robeson, L.M., Elimelech, M., and Freeman, B.D., Maximizing the right stuff: The trade-off between membrane permeability and selectivity, Science, 2017, vol. 356, p. eaab0530.
  25. Baker, R.W. and Low, B.T., Gas separation membrane materials: A perspective, Macromolecules, 2014, vol. 47, p. 6999.
  26. Bonso, J.S., Kalaw, G.D., and Ferrais, J.P., High surface area carbon nanofibers derived from electrospun PIM-1 for energy storage applications, J. Mater. Chem. A., 2014, vol. 2, p. 418.
  27. Ponomarev, I.I., Blagodatskikh, I.V., Muranov, A.V., Volkova, Y.A., Razorenov, D.Y., Ponomarev, Iv.I., and Skupov, K.M., Dimethyl sulfoxide as a green solvent for successful precipitative polyheterocyclization based on nucleophilic aromatic substitution, resulting in high molecular weight PIM-1, Mendeleev Commun., 2016., vol. 26, p. 326.
  28. Schmidt, T.J. and Baurmeister, J., Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode, J. Power Sources, 2008, vol. 176, p. 428.
  29. Volfkovich, Yu.M. and Sosenkin, V.E., Porous structure and wetting of fuel cell components as the factors determining their electrochemical characteristics, Russ. Chem. Rev., 2012, vol. 81, p. 936.
  30. Volfkovich, Yu.M., Sosenkin, V.E., and Bagotsky, V.S., Structural and wetting properties of fuel cell components, J. Power Sources., 2010, vol. 195, p. 5429.
  31. Bukalov, S.S., Leites, L.A., Goloveshkin, A.S., Tyumentsev, V.A., and Fazlitdinova, A.G., Structure of sp 2-carbon fiber prepared by high-temperature thermomechanical treatment of polyacrylonitrile fiber: a Raman and X-Ray diffraction study, Russ. Chem. Bull., vol. 67, p. 1002.
  32. Bukalov, S.S., Zubavichus, Ya.V., Leites, L.A., Sorokin, A.I., and Kotosonov, A.S., Structural changes in industrial glassy carbon as a function of heat treatment temperature according to Raman spectroscopy and X-ray diffraction data, Nanosystems, Phys. Chem. Math., 2014, vol. 5, p. 186.