Examples



mdbootstrap.com



 
Статья
2020

Physicochemical approaches for optimization of perovskite solar cell performance


A. B. NikolskaiaA. B. Nikolskaia, M. F. VildanovaM. F. Vildanova, S. S. KozlovS. S. Kozlov, O. I. ShevaleevskiyO. I. Shevaleevskiy
Российский химический вестник
https://doi.org/10.1007/s11172-020-2894-4
Abstract / Full Text

Perovskite solar cells (PSCs) with photovoltaic parameters improved using a number of physicochemical approaches for optimization of structure and properties of their components were fabricated and studied under both standard illumination conditions AM1.5G and reduced illumination intensity. Photoelectrodes based on mesoscopic TiO2 layers with different content of anatase and rutile particles were constructed, as well as the perovskite material and the TiO2—perovskite interface were modified. As a result, the optimized PSCs had increased stability in a humid atmosphere and showed high efficiencies (10–14%) in a wide range of illumination intensities of 10–1000 W m−2.

Author information
  • N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 ul. Kosygina, 119334, Moscow, Russian FederationA. B. Nikolskaia, M. F. Vildanova, S. S. Kozlov & O. I. Shevaleevskiy
References
  1. H. J. Snaith, J. Phys. Chem. Lett., 2013, 4, 3623.
  2. Z. Song, S. C. Watthage, A. B. Phillips, M. J. Heben, J. Photon. Energ., 2016, 6, 022001.
  3. M. I. H. Ansaria, A. Qurashib, M. K. Nazeeruddin, J. Photochem. Photobiol. C: Photochem. Rev., 2018, 35, 1.
  4. J. Jean, P. R. Brown, R. L. Jaffe, T. Buonassisi, V. Bulović, Energ. Environ. Sci., 2015, 8, 1200.
  5. R. Wang, M. Mujahid, Y. Duan, Z. K. Wang, J. Xue, Y. Yang, Adv. Funct. Mater., 2019, 29, 1808843.
  6. D. Wang, M. Wright, N. K. Elumalai, A. Uddin, Sol. Energ. Mater. Sol. Cell., 2016, 147, 255.
  7. G. Niu, X. Guo, L. Wang, J. Mater. Chem. A, 2015, 3, 8970.
  8. Z. Song, A. Abate, S. C. Watthage, G. K. Liyanage, A. B. Phillips, U. Steiner, M. Graetzel, M. J. Heben, Adv. Energy. Mater., 2016, 6, 1600846.
  9. T. A. Berhe, W. Su, C. Chen, C. Pan, J. Cheng, H. Chen, M. Tsai, L. Chen, A. A. Dubale, B. Hwang, Energ. Environ. Sci., 2016, 9, 323.
  10. J. Prakash, A. Singh, G. Sathiyan, R. Ranjan, A. Singh, A. Garg, R. K. Gupta, Mater. Today Energ., 2018, 9, 440.
  11. K. Wang, W. S. Subhani, Y. Wang, X. Zuo, H. Wang, L. Duan, S. Liu, Adv. Mater., 2019, 31, 1902037.
  12. J. Chang, Z. Lin, H. Zhu, F. H. Isikgor, Q. H. Xu, C. Zhang, H. Yue, J. Ouyang, J. Mater. Chem. A, 2016, 4, 16546.
  13. I. Raifuku, Y. Ishikawa, S. Ito, Y. Uraoka, J. Phys. Chem. C, 2016, 120, 18986.
  14. V. Stockhausen, L. Andrade, D. Ivanou, B. Stannowski, A. Mendes, Sol. Energ. Mater. Sol. Cell., 2019, 191, 451.
  15. A. B. Nikolskaia, S. S. Kozlov, M. F. Vildanova, O. I. Shevaleevskiy, Semiconductors, 2019, 53, 550.
  16. V. Stoichkov, N. Bristow, J. Troughton, F. De Rossi, T. M. Watson, J. Kettle, Sol. Energ., 2018, 170, 549.
  17. E. Velilla, D. Ramirez, J. I. Uribe, J. F. Montoya, F. Jaramillo, Sol. Energ. Mater. Sol. Cell., 2019, 191, 15.
  18. N. Park, M. Grätzel, T. Miyasaka, K. Zhu, K. Emery, Nat. Energ., 2016, 1, 16152.
  19. J. Kim, A. Ho-Baillie, S. Huang, Sol. RRL, 2019, 3, 1800302.
  20. A. N. Cho, N. G. Park, ChemSusChem, 2017, 10, 3687.
  21. T. M. Serikov, N. K. Ibrayev, N. Nuraje, S. V. Savilov, V. V. Lunin, Russ. Chem. Bull., 2017, 66, 614.
  22. O. I. Shevaleevskiy, A. B. Nikolskaia, M. F. Vildanova, S. S. Kozlov, O. V. Alexeeva, A. A. Vishnev, L. L. Larina, Russ. J. Phys. Chem. B, 2018, 12, 663.
  23. M. Vildanova, S. Kozlov, A. Nikolskaia, O. Shevaleevskiy, N. Tsvetkov, O. Alexeeva, L. Larina, Nanosystems: Physics, Chemistry, Mathematics, 2017, 8, 540.
  24. M. F. Vildanova, A. B. Nikolskaia, S. S. Kozlov, O. I. Shevaleevskiy, L. L. Larina, Tech. Phys. Lett., 2018, 44, 126.
  25. A. Luque, S. Hegedu, in Handbook of Photovoltaic Science and Engineering, Eds A. Luque, S. Hegedu, John Wiley & Sons Ltd., Chichester, 2003, p. 92.