The synthesis, structure, and electrochemical properties of Li2FeSiO4-based lithium-accumulating electrode material

A. V. Ivanishchev A. V. Ivanishchev , A. V. Churikov A. V. Churikov , A. S. Akmaev A. S. Akmaev , A. V. Ushakov A. V. Ushakov , I. A. Ivanishcheva I. A. Ivanishcheva , I. M. Gamayunova I. M. Gamayunova , M. J. Sneha M. J. Sneha , A. Dixit A. Dixit
Российский электрохимический журнал
Abstract / Full Text

Different approaches to synthesis of Li2FeSiO4-based electrode materials for lithium intercalation, using low-cost and abundant Li-, Si-, and Fe-containing parent substances, are discussed. XRD, SEM, and a laser-diffraction analyzer of particle size were used for structure and morphology characterization of the composite electrode materials. Li2FeSiO4 was shown to be the main lithium-accumulating crystalline phase; minor LiFeO2 and Li2SiO3 admixtures are also present. The material microparticles’ average size was shown to vary from tenths of micrometer to 1 μm. Larger objects sized ca. 2–4 μm are the microparticles’ agglomerates. The material electrochemical properties were studied by dc chronopotentiometry (galvanostatic charging–discharging) and cyclic voltammetry with potential linear sweeping. The initial reversible cycled capacity of the best samples is 170 mA h/g. The anodic and cathodic processes manifest obvious hysteresis caused by the presence of several different lithium ion energy states in the material; the transition between the states is kinetically hindered. The dependences of the specific capacity and its stability under cycling on the current load and the conductive carbon component content in the composite were elucidated.

Author information
  • Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Nobel str. 3, Moscow, 143026, Russia

    A. V. Ivanishchev

  • Institute of Chemistry, Saratov State University named after N.G.Chernyshevsky, Astrakhanskaya str. 83, Saratov, 410012, Russia

    A. V. Ivanishchev, A. V. Churikov, A. S. Akmaev, A. V. Ushakov, I. A. Ivanishcheva & I. M. Gamayunova

  • Department of Physics and Center for Solar Energy, Indian Institute of Technology Jodhpur, 342011, Radjastan, India

    M. J. Sneha & A. Dixit

  1. Tarascon, J.-M. and Armand, M., Nature, 2001, vol. 414, p. 359.
  2. Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J.B., J. Electrochem. Soc., 1997, vol. 144, p. 1188.
  3. Lyness, C., Delobel, B., Armstrong, A.R., and Bruce, P.G., Chem. Commun., 2007, vol. 46, p. 4890.
  4. Dominko, R., J. Power Sources, 2008, vol. 184, p. 462.
  5. Nytén, A., Abouimrane, A., Armand, M., Gustafsson, T., and Thomas, J.O., Electrochem. Commun., 2005, vol. 7, p. 156.
  6. Belharouak, I., Abouimrane, A., and Amine, K., J. Phys. Chem., 2009, vol. 113, p. 20733.
  7. Gong, Z.L., Li, Y.X., He, G.N., Li, J., and Yang, Y., Electrochem. Solid-State Lett., 2008, vol. 11, p. A60.
  8. Kokalj, A., Dominko, R., Mali, G., Meden, A., Gaberscek, M., and Jamnik, J., Chem. Mater., 2007, vol. 19, p. 3633.
  9. Rangappa, D., Murukanahally, K.D., Tomai, T., Unemoto, A., and Honma, I., Nano Lett., 2012, vol. 12, p. 1146.
  10. Arroyo-de Dompablo, M.E., Armand, M., Tarascon, J.-M., and Amador, U., Electrochem. Commun., 2006, vol. 8, p. 1292.
  11. Gong, Z.L., Li, Y.X., and Yang, Y., J. Power Sources, 2007, vol. 174, p. 524.
  12. Fan, X.-Y., Li, Y., Wang, J.-J., Gou, L., Zhao, P., Li, D.-L., Huang, L., and Sun, S.-G., J. Alloys Comp., 2010, vol. 493, p. 77.