Examples



mdbootstrap.com



 
Статья
2022

Sorption of Amphenicols on Magnetic Hypercrosslinked Polystyrene


V. V. TolmachevaV. V. Tolmacheva, V. Yu. SavinovaV. Yu. Savinova, N. O. GoncharovN. O. Goncharov, S. G. DmitrienkoS. G. Dmitrienko, V. V. ApyariV. V. Apyari, P. A. ChernavskyP. A. Chernavsky, G. V. PankinaG. V. Pankina
Российский журнал физической химии А
https://doi.org/10.1134/S0036024422060267
Abstract / Full Text

A study is performed of the sorption of chloramphenicol, florfenicol, and thiamphenicol on magnetic hypercrosslinked polystyrene (HCPS/Fe3O4). Magnetic HCPS is obtained via the sorption of Fe3O4 nanoparticles on commercially available HCPS Diapak P-3. The specific surface areas and parameters of the porous structure of the magnetic HCPS are determined by means of low-temperature nitrogen adsorption. It is found that introducing Fe3O4 nanoparticles into the HCPS matrix slightly lowers the specific surface area of the sorbent (from 1132 to 1080 m2/d) and the volume of pores, but these characteristics are strong enough to use the resulting composite as a sorbent. It is established that the HCPS-based magnetic sorbent exhibits superparamagnetic properties. The saturation magnetization is 1.7 emu/g, enough to extract the sorbent from the solution under the action of the magnetic field of a permanent magnet. It is shown that magnetic HCPS can be used for the group sorption concentration of amphenicols via magnetic solid-phase extraction.

Author information
  • Department of Chemistry, Lomonosov Moscow State University, 119991, Moscow, RussiaV. V. Tolmacheva, V. Yu. Savinova, N. O. Goncharov, S. G. Dmitrienko, V. V. Apyari, P. A. Chernavsky & G. V. Pankina
References
  1. M.-C. Danner, A. Robertson, V. Behrends, et al., Sci. Total Environ. 664, 793 (2019).
  2. S. Rath, A. H. Fostier, L. A. Pereira, et al., Chemosphere 214, 111 (2019).
  3. M. B. Ahmed, J. L. Zhou, H. H. Ngo, and W. Guo, Sci. Total Environ. 532, 112 (2015).
  4. L. R. Guidi, P. A. Tette, C. Fernandes, et al., Talanta 162, 324 (2017).
  5. P. Liao, Z. Zhan, J. Dai, et al., Chem. Eng. J. 228, 496 (2013).
  6. J. Lach, Water 11, 1141 (2019).
  7. Y. Li, J. Zhang, and H. Liu, Water 10, 351 (2018).
  8. H. Liu, Y. Wei, J. Luo, et al., Chem. Eng. J. 368, 639 (2019).
  9. M. B. Ahmed, J. L. Zhou, H. H. Ngo, et al., Bioresource Technol. 238, 306 (2017).
  10. A. T. M. Din, M. A. Ahmad, and B. H. Hameed, Chem. Eng. J. 260, 730 (2015).
  11. J. Dai, S. Tian, Y. Jiang, et al., Ind. Eng. Chem. Res. 57, 3510 (2018).
  12. A. F. Forti, G. Campana, A. Simonella, et al., Anal. Chim. Acta 529, 257 (2005).
  13. F. Moragues, C. Igualada, and N. Leon, Food Anal. Methods 5, 416 (2012).
  14. A. Azzouz and E. Ballesteros, Food Chem. 178, 63 (2015).
  15. A. Kaufmann, P. Butcher, K. Maden, et al., Anal. Chim. Acta 862, 41 (2015).
  16. C. L. Chitescu, G. Kaklamanos, A. I. Nicolau, et al., Sci. Total Environ. 532, 501 (2015).
  17. Y. Lu, Q. Shen, Z. Dai, et al., Anal. Bioanal. Chem. 398, 1819 (2010).
  18. V. Samanidou, L.-D. Galanopoulos, A. Kabir, and K. G. Furton, Anal. Chim. Acta 855, 41 (2015).
  19. S. Armenta, M. Guardia, A. Abad-Fuentes, et al., Anal. Bioanal. Chem. 408, 8559 (2016).
  20. V. Samanidou, M. Kehagia, A. Kabir, and K. G. Furton, Anal. Chim. Acta 914, 62 (2016).
  21. J. Dai, J. He, A. Xie, et al., Chem. Eng. J. 284, 812 (2016).
  22. S. Wei, J. Li, Y. Liu, et al., J. Chromatogr., A 1473, 19 (2016).
  23. H. Shengfeng, N. Gan, L. Haibo, et al., J. Chromatogr., B 1060, 247 (2017).
  24. H. Liu, Y. Zhou, Y. Qi, et al., J. Liq. Chromatogr. R 41, 868 (2018).
  25. Q. Gao, C.-Y. Lin, D. Luo, et al., J. Sep. Sci. 34, 3083 (2011).
  26. M. Zhang, Q. Zhou, A. Li, et al., J. Chromatogr., A 1316, 44 (2013).
  27. W. Wang, Y. Ma, Q. Zhou, et al., Front. Environ. Sci. Eng. 9, 96 (2015).
  28. A. V. Pastukhov, V. A. Davankov, K. I. Lubentsova, E. G. Kosandrovich, and V. S. Soldatov, Russ. J. Phys. Chem. A 87, 1702 (2013).
  29. A. V. Pastukhov, V. A. Davankov, V. V. Volkov, et al., J. Polym. Res. 21, 406 (2014).
  30. V. V. Tolmacheva, V. V. Apyari, B. N. Ibragimova, E. V. Kochuk, S. G. Dmitrienko, and Yu. A. Zolotov, J. Anal. Chem. 70, 1313 (2015).
  31. V. V. Tolmacheva, V. V. Apyari, A. A. Furletov, et al., Talanta 152, 203 (2016).
  32. P. A. Chernavskii, B. S. Lunin, R. A. Zakharyan, G. V. Pankina, and N. S. Perov, Instrum. Exp. Tech. 57, 78 (2009).
  33. R. Massart, IEEE Trans. Magn. 2, 1247 (1981).
  34. V. V. Tolmacheva, D. I. Yarykin, O. N. Serdiuk, et al., React. Funct. Polym. 131, 56 (2018).