Examples



mdbootstrap.com



 
Статья
2020

Structure of the Nearest Environment of Na+, K+, Rb+, and Cs+ Ions in Oxygen-Containing Solvents


P. R. SmirnovP. R. Smirnov
Российский журнал общей химии
https://doi.org/10.1134/S1070363220090169
Abstract / Full Text

The review generalizes and analyzes published data on different methods of studying structural characteristics of the solvation environment of alkali metal ions (except for Li+) in various electron-donor oxygen-containing solvents. Coordination numbers of alkali metal ions, interspecies distances, and types of ion association are discussed. The solvation structures of alkali metal cations in water and some nonaqueous systems are compared. The number of solvent molecules and the distance between the cation and oxygen atom of solvent molecule in the first coordination sphere are independent of physicochemical properties of the solvent.

Author information
  • Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045, Ivanovo, RussiaP. R. Smirnov
References
  1. Smirnov, P.R., Russ. J. Gen. Chem., 2019, vol. 89, no. 12, p. 2443. https://doi.org/10.1134/S1070363219120193
  2. Smirnov, P.R. and Trostin, V.N., Russ. J. Gen. Chem., 2007, vol. 77, no. 5, p. 844. https://doi.org/10.1134/S1070363207050052
  3. Smirnov, P.R. and Trostin, V.N., Russ. J. Gen. Chem., 2007, vol. 77, no. 12, p. 2101. https://doi.org/10.1134/S1070363207120043
  4. Zhou, Y., Fang, C., Fang, Y., Zhu, F., Tao, S., and Xu, S.,Russ. J. Phys. Chem. A, 2012, vol. 86, no. 8, p. 1236. https://doi.org/10.1134/S0036024412060349
  5. Mähler, J. and Persson, I., Inorg. Chem., 2012, vol. 51, no. 1, p. 425. https://doi.org/10.1021/ic2018693
  6. Zhou, Y., Higa, S., Fang, C., Fang, Y., Zhang, W., and Yamaguchi, T., Phys. Chem. Chem. Phys., 2017, vol. 19, p. 27878. https://doi.org/10.1039/C7CP05107G
  7. Galib, M., Baer, M.D., Skinner, L.B., Mundy, C.J., Huthwelker, T., Schenter, G.K., Benmore, C.J., Govind, N., Fulton, J.L., J. Chem. Phys., 2017, vol. 146, article ID 084504. https://doi.org/10.1063/1.4975608
  8. Zhou, Y., Yamaguchi, T., Yoshida, K., Fang, C., Fang, Y., and Zhu, F., J. Mol. Liq., 2019, vol. 274, p. 173. https://doi.org/10.1016/j.molliq.2018.10.124
  9. Beladjine, S., Amrani, M., Zanoun, A., Belaidi, A., and Vergoten, G., Comput. Theor. Chem., 2011, vol. 977, nos. 1–3, p. 97. https://doi.org/10.1016/j.comptc.2011.09.010
  10. Hartkamp, R. and Coasne, B., J. Chem. Phys., 2014, vol. 141, no. 12, article ID 124508. https://doi.org/10.1063/1.4896380
  11. Neela, Y.I., Mahadevi, A.S., and Sastry, G.N., Struct. Chem., 2013, vol. 24, no. 1, p. 67. https://doi.org/10.1007/s11224-012-0032-0
  12. Zhou, Y., Fang, C., Fang, Y., Zhu, F., Ge, H., and Liu, H.,Russ. J. Phys. Chem. A, 2017, vol. 91, no. 13, p. 2539. https://doi.org/10.1134/S0036024417130313
  13. Teychené, J., Roux-de Balmann, H., Maron, L., and Galier, S.,ACS Cent. Sci., 2018, vol. 4, no. 11, p. 1531. https://doi.org/10.1021/acscentsci.8b00610
  14. Teychene, J., Roux-de Balmann, H., Maron, L., and Galier, S.,J. Mol. Liq., 2019, vol. 294, article ID 111394. https://doi.org/10.1016/j.molliq.2019.111394
  15. Zeng, Y., Hu, J., Yuan, Y., Zhang, X., and Ju, S., Chem. Phys. Lett., 2012, vol. 538, p. 60. https://doi.org/10.1016/j.cplett.2012.04.035
  16. Rowley, C.N. and Roux, B., J. Chem. Theory Comput., 2012, vol. 8, no. 10, p. 3526. https://doi.org/10.1021/ct300091w
  17. Lev, B., Roux, B., and Noskov, S.Y., J. Chem. Theory Comput., 2013, vol. 9, no. 9, p. 4165. https://doi.org/10.1021/ct400296w
  18. Sripa, P., Tongraar, A., and Kerdcharoen, T., J. Phys. Chem. A, 2013, vol. 117, no. 8, p. 1826. https://doi.org/10.1021/jp312230g
  19. Bankura, A., Carnevale, V., and Klein, M.L., J. Chem. Phys., 2013, vol. 138, no. 1, article ID 014501. https://doi.org/10.1063/1.4772761
  20. Bankura, A., Carnevale, V., and Klein, M.L., Mol. Phys., 2014, vol. 112, nos. 9–10, p. 1448. https://doi.org/10.1080/00268976.2014.905721
  21. Gaiduk, A.P., Zhang, C., Gygi, F., and Galli, G., Chem. Phys. Lett., 2014, vol. 604, p. 89. https://doi.org/10.1016/j.cplett.2014.04.037
  22. Faginas-Lago, N., Lombardi, A., Albertí, M., and Grossi, G.,J. Mol. Liq., 2015, vol. 204, p. 192. https://doi.org/10.1016/j.molliq.2015.01.029
  23. Gee, M.B., Cox, N.R., Jiao, Y., Bentenitis, N., Weerasinghe, S., and Smith, P.E., J. Chem. Theory Comput., 2011, vol. 7, no. 5, p. 1369. https://doi.org/10.1021/ct100517z
  24. Chen, H. and Ruckenstein, E., J. Phys. Chem. B, 2015, vol. 119, no. 39, p. 12671. https://doi.org/10.1021/acs.jpcb.5b06837
  25. Liu, C., Min, F., Liu, L., and Chen, J., Chem. Phys. Lett., 2019, vol. 727, p. 31. https://doi.org/10.1016/j.cplett.2019.04.045
  26. Zhou, L., Xu, J., Xu, L., and Wu, X., J. Chem. Phys., 2019, vol. 150, no. 12, article ID 124505. https://doi.org/10.1063/1.5086939
  27. Smirnov, P.R., Russ. J. Gen. Chem., 2013, vol. 83, no. 11, p. 1967. https://doi.org/10.1134/S1070363213110017
  28. Naidoo, K.J., Lopis, A.S., Westra, A.N., Robinson, D.J., and Koch, K.R., J. Am. Chem. Soc., 2003, vol. 125, no. 44, p. 13330. https://doi.org/10.1021/ja035326x
  29. Dixit, M.K. and Tembe, B.L., J. Mol. Liq., 2013, vol. 178, p. 78. https://doi.org/10.1016/j.molliq.2012.09.026
  30. Kloss, A.A. and Fawcett, W.R., J. Chem. Soc., Faraday Trans., 1998, vol. 94, no. 24, p. 1587. https://doi.org/10.1039/A800427G
  31. He, M., Lau, K.C., Ren, X., Xiao, N., McCulloch, W.D., Curtiss, L.A., and Wu, Y., Angew. Chem., Int. Ed., 2016, vol. 55, p. 15310. https://doi.org/10.1002/anie.201608607
  32. Rao, B.G. and Singh, U.C., J. Am. Chem. Soc., 1990, vol. 112, no. 10, p. 3803. https://doi.org/10.1021/ja00166a014
  33. Kalugin, O.N., Volobuev, M.N., Ishchenko, A.V., and Adya, A.K.,J. Mol. Liq., 2000, vol. 85, no. 3, p. 299. https://doi.org/10.1016/S0167-7322(00)89014-5
  34. Adya, A., Kalugin, O., Volobuev, M., and Kolesnik, Y., Mol. Phys., 2001, vol. 99, no. 10, p. 835. https://doi.org/10.1080/00268970010024867
  35. Madhusoodanan, M. and Tembe, B.L., J. Phys. Chem., 1994, vol. 98, no. 28, p. 7090. https://doi.org/10.1021/j100079a032
  36. Madhusoodanan, M. and Tembe, B.L., J. Phys. Chem., 1995, vol. 99, no. 1, p. 44. https://doi.org/10.1021/j100001a009
  37. Das, A.K. and Tembe, B.L., J. Chem. Phys., 1998, vol. 108, no. 7, p. 2930. https://doi.org/10.1063/1.475680
  38. Kerisit, S., Vijayakumar, M., Han, K.S., and Mueller, K.T.,J. Chem. Phys., 2015, vol. 142, no. 22, article ID 224502. https://doi.org/10.1063/1.4921982
  39. Patil, U.N., Keshri, S., and Tembe, B.L., J. Mol. Liq., 2015, vol. 207, p. 279. https://doi.org/10.1016/j.molliq.2015.03.048
  40. Pham, T.A., Kweon, K.E., Samanta, A., Lordi, V., and Pask, J.E.,J. Phys. Chem. C, 2017, vol. 121, no. 40, p. 21913. https://doi.org/10.1021/acs.jpcc.7b06457
  41. Brooksby, P.A. and Fawcett, W.R., Spectrochim. Acta, Part A, 2006, vol. 64, no. 2, p. 372. https://doi.org/10.1016/j.saa.2005.07.033
  42. Flores, E., Avall, G., Jeschke, S., and Johansson, P., Electrochim. Acta, 2017, vol. 233, p. 134. https://doi.org/10.1016/j.electacta.2017.03.031
  43. Cresce, A.V., Russell, S.M., Borodin, O., Allen, J.A., Schroeder, M.A., Dai, M., Peng, J., Gobet, M.P., Greenbaum, S.G., Rogers, R.E., and Xu, K.,Phys. Chem. Chem. Phys., 2017, vol. 19, p. 574. https://doi.org/10.1039/C6CP07215A
  44. Yu, H., Mazzanti, C.L., Whitfield, T.W., Koeppe, R.E., Andersen, O.S., and Roux, B., J. Am. Chem. Soc., 2010, vol. 132, no. 31, p. 10847. https://doi.org/10.1021/ja103270w
  45. Pattanayak, S.K. and Chowdhuri, S., J. Theor. Comput. Chem., 2012, vol. 11, no. 2, p. 361. https://doi.org/10.1142/S0219633612500241
  46. Pattanayak, S.K. and Chowdhuri, S., J. Mol. Liq., 2012, vol. 172, p. 102. https://doi.org/10.1016/j.molliq.2012.05.012
  47. Wanprakhon, S., Tongraar, A., and Kerdcharoen, T., Chem. Phys. Lett., 2011, vol. 517, nos. 4–6, p. 171. https://doi.org/10.1016/j.cplett.2011.10.048
  48. Fang, C.H., Zhu, F.Y., Fang, Y., Zhou, Y.Q., Tao, S., and Xu, S.,Phys. Chem. Liq., 2013, vol. 51, no. 2, p. 218. https://doi.org/10.1080/00319104.2012.722061
  49. Zhu, F.Y., Fang, C.H., Fang, Y., Zhou, Y.Q., Ge, H.W., and Liu, H.Y., J. Mol. Struct., 2014, vol. 1070, p. 80. https://doi.org/10.1016/j.molstruc.2014.04.002
  50. Gallo, P., Corradini, D., and Rovere, M., J. Mol. Liq., 2014, vol. 189, p. 52. https://doi.org/10.1016/j.molliq.2013.05.023
  51. Sripa, P., Tongraar, A., and Kerdcharoen, T., Chem. Phys., 2016, vol. 479, p. 72. https://doi.org/10.1016/j.chemphys.2016.09.028
  52. Li, F., Li, S., Zhuang, X., and Yuan, J., Chem. Eng. Trans. 2017, vol. 61, p. 769. https://doi.org/10.3303/CET1761126
  53. Zhu, F.Y., Fang, C.H., Fang, Y., Zhou, Y.Q., Ge, H.W., and Liu, H.Y., J. Mol. Struct., 2015, vol. 1083, p. 471. https://doi.org/10.1016/j.molstruc.2014.10.041
  54. Zhu, F., Zhou, H., Zhou, Y., Miao, J., Fang, C., Fang, Y., Sun, P., Ge, H., and Liu, H., Eur. Phys. J. D, 2016, vol. 70, p. 246. https://doi.org/10.1140/epjd/e2016-60529-7
  55. Li, F., Yuan, J., Li, D., Li, S., and Han, Z., J. Mol. Struct., 2015, vol. 1081, p. 38. https://doi.org/10.1016/j.molstruc.2014.09.062
  56. Eiberweiser, A., Nazet, A., Hefter, G., and Buchner, R., J. Phys. Chem. B, 2015, vol. 119, no. 16, p. 5270. https://doi.org/10.1021/acs.jpcb.5b01417
  57. Bertagnolli, H., Schultz, H.E., and Chieux, P., Ber. Bunsenges. Phys. Chem., 1989, vol. 93, no. 1, p. 88. https://doi.org/10.1002/bbpc.19890930117
  58. Siddique, A.A., Dixit, M.K., and Tembe, B.L., J. Mol. Liq., 2013, vol. 188, p. 5. https://doi.org/10.1016/j.molliq.2013.09.004
  59. Pham, V.T. and Fulton, J.L., J. Chem. Phys., 2013, vol. 138, no. 4, article ID 044201. https://doi.org/10.1063/1.4775588
  60. Pham, V.-T. and Fulton, J.L., J. Solut. Chem., 2016, vol. 45, no. 7, p. 1061. https://doi.org/10.1007/s10953-016-0487-5
  61. Miao, J.T., Fang, C.H., Fang, Y., Zhu, F.Y., Liu, H.Y., Zhou, Y.Q., Ge, H.W., Sun, P.C., and Zhao, X.C., J. Mol. Struct., 2016, vol. 1109, p. 67. https://doi.org/10.1016/j.molstruc.2015.12.081
  62. Zhang, W.Q., Fang, C.H., Li, W., Zhou, Y.Q., Zhu, F.Y., and Liu, H.Y., J. Mol. Liq., 2019, vol. 1194, p. 262. https://doi.org/10.1016/j.molstruc.2019.01.019
  63. Boda, A. and Ali, S.M., J. Mol. Liq., 2013, vol. 179, p. 34. https://doi.org/10.1016/j.molliq.2012.12.007
  64. Caralampio, D.Z., Martínez, J.M., Pappalardo, R.R., and Marcos, E.S., Phys. Chem. Chem. Phys., 2017, vol. 19, no. 42, p. 28993. https://doi.org/10.1039/C7CP05346K
  65. Hydayat, Y., Pranowo, H.D., and Trisunaryanti, W., J. Mol. Liq., 2020, vol. 298, article ID 112027. https://doi.org/10.1016/j.molliq.2019.112027
  66. Chowdhuri, S. and Chandra, A., J. Chem. Phys., 2006, vol. 124, no. 8, article ID 084507. https://doi.org/10.1063/1.2172598
  67. D’Angelo, P. and Persson, I., Inorg. Chem., 2004, vol. 43, no. 11, p. 3543. https://doi.org/10.1021/ic030310t
  68. Mile, V., Gereben, O., Kohara, S., and Pusztai, L., J. Phys. Chem. B, 2012, vol. 116, no. 32, p. 9758. https://doi.org/10.1021/jp301595m
  69. Zhang, W.Q., Fang, C.H., Fang, Y., Zhu, F.Y., Zhou, Y.Q., Liu, H.Y., and Li, W., J. Mol. Struct., 2018, vol. 1160, p. 26. https://doi.org/10.1016/j.molstruc.2017.12.099
  70. Pham, V.T. and Fulton, J.L., J. Electron Spectrosc. Relat. Phenom., 2018, vol. 229, p. 20. https://doi.org/10.1016/j.elspec.2018.09.004
  71. Roy, S. and Bryantsev, V.S., J. Phys. Chem. B, 2018, vol. 122, no. 50, p. 12067. https://doi.org/10.1021/acs.jpcb.8b08414