Examples



mdbootstrap.com



 
Статья
2018

Electroactive Composite Pd–Polypyrrole and Its Catalytic Properties in the Reaction of Styryl Bromide Cyanation


O. M. Nikitin O. M. Nikitin , T. V. Magdesieva T. V. Magdesieva , O. V. Polyakova O. V. Polyakova , P. K. Sazonov P. K. Sazonov , K. V. Gor’kov K. V. Gor’kov , E. V. Zolotukhina E. V. Zolotukhina , M. A. Vorotyntsev M. A. Vorotyntsev
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518070066
Abstract / Full Text

A composite material in the form of powder is synthesized by a redox reaction in mixed aqueous solution of Pd(NH3)4Cl2 + pyrrole. The composite consists of polypyrrole globules with palladium nanoparticles uniformly distributed inside the latter. Being applied as a film on the electrode surface, both components of this material exhibit redox activity. Palladium particles inside the composite exhibit catalytic properties in cyanation of styryl bromides, a reaction widely used in fine organic synthesis.

Author information
  • Moscow State University, Faculty of Chemistry, Leninskie Gory, Moscow, 119992, Russia

    O. M. Nikitin, T. V. Magdesieva, O. V. Polyakova, P. K. Sazonov & M. A. Vorotyntsev

  • Institute of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast’, 142432, Russia

    K. V. Gor’kov, E. V. Zolotukhina & M. A. Vorotyntsev

  • Mendeleeev University of Chemical Technology of Russia, Moscow, 125047, Russia

    M. A. Vorotyntsev

  • ICMUB, UMR 6302 CNRS, Université de Bourgogne, Dijon, France

    M. A. Vorotyntsev

References
  1. Shahinpoor, M., Bar-Cohen, Y., Simpson, J.O., and Smith, J., Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles—a review, Smart Mater. Struct., 1999, vol. 7, no. 6, p. R15.
  2. Ramakrishna, S., Mayer, J., Wintermantel, E., and Leong, K.W., Biomedical applications of polymercomposite materials: a review, Compos. Sci. Technol., 2001, vol. 61, no. 9, p. 1189.
  3. Shahinpoor, M. and Kim, K.J., Ionic polymer-metal composites: I. Fundamentals, Smart Mater. Struct., 2001, vol. 10, p. 819.
  4. Vasilyeva, S.V., Vorotyntsev, M.A., Bezverkhyy, I., Chassagnon, R., Heintz, O., and Lesniewska, E., Synthesis and characterization of palladium nanoparticle/polypyrrole composites, J. Phys. Chem. C, 2008, vol. 112, p. 19878.
  5. Zinovyeva, V.A., Vorotyntsev, M.A., Bezverkhyy, I., Chaumont, D., and Hierso, J.C., Highly dispersed palladium-polypyrrole nanocomposites: In-water synthesis and application for catalytic arylation of heteroaromatics by direct C–H bond activation, Adv. Funct. Mater., 2011, vol. 21, p. 1064.
  6. Magdesieva, T.V., Nikitin, O.M., Levitsky, O.A., Zinovyeva, V.A., Bezverkhyy, I., Zolotukhina, E.V., and Vorotyntsev, M.A., Polypyrrole-palladium nanoparticles composite as efficient catalyst for Suzuki-Miyaura coupling, J. Mol. Catal. A, 2012, vols. 353–354, p. 50.
  7. Magdesieva, T.V., Nikitin, O.M., Zolotukhina, E.V., Zinovyeva, V.A., and Vorotyntsev, M.A., Palladium–polypyrrole nanoparticles—catalyzed Sonogashira coupling, Mendeleev Commun., 2012, vol. 22, p. 305.
  8. Magdesieva, T.V., Nikitin, O.M., Zolotukhina, E.V., and Vorotyntsev, M.A., Palladium nanoparticles–polypyrrole composite as an efficient catalyst for cyanation of aryl halides, Electrochim. Acta, 2014, vol. 122, p. 289.
  9. Gor'kov, K.V., Zolotukhina, E.V., Mustafina, E.R., Vorotyntsev, M.A., Antipov, E.M., and Aldoshin, S.M., Electrocatalytic activity of nanostructured palladiumpolypyrrole composite in formaldehyde oxidation reaction, Dokl. Phys. Chem., 2016, vol. 467, p. 37.
  10. Gor’kov, K.V., Zolotukhina, E.V., Mustafina, E.R., and Vorotyntsev, M.A., Synthesis and electrocatalytic properties of palladium-polypyrrole nanocomposite in formaldehyde oxidation reaction, Russ. J. Electrochem., 2017, vol. 53, p. 49.
  11. Li, Y. and Qian, R., Effect of anion and solution pH on the electrochemical behavior of polypyrrole in aqueous solution, Synth. Met., 1989, vol. 28, p. 127.
  12. Jeong, M.-Ch., Pyun, Ch.H., and Yeo, I.-H., Voltammetric studies on the palladium oxides in alkaline media, J. Electrochem. Soc., 1993, vol. 140, p. 1986.
  13. Anbarasan, P., Schareina, T., and Beller, M., Recent developments and perspectives in palladium-catalyzed cyanation of aryl halides: synthesis of benzonitriles, Chem. Soc. Rev., 2011, vol. 40, p. 5049.
  14. Ren, Y., Yan, M., and Zhao, S., Pd-catalyzed cyanation of benzyl chlorides with nontoxic K4[Fe(CN)6], Tetrahedron Lett., 2011, vol. 52, p. 5107.
  15. Li, L.H., Pan, Z.L., Duan, X.H., and Liang, Y.M., An environmentally benign procedure for the synthesis of aryl and arylvinyl nitriles assisted by microwave in ionic liquid, Synlett, 2006, p. 2094.
  16. Chatterjee, T., Dey, R., and Ranu, B.C., ZnO-supported Pd nanoparticle-catalyzed ligand-and additivefree cyanation of unactivated aryl halides using K4[Fe(CN)6], J. Org. Chem., 2014, vol. 79, p. 5875.