Composite Electrolytes Based on Cesium Dihydrogen Phosphate and Fluropolymers

I. N. Bagryantseva I. N. Bagryantseva , Yu. E. Kungurtsev Yu. E. Kungurtsev , D. O. Dormidonova D. O. Dormidonova , V. G. Ponomareva V. G. Ponomareva
Российский электрохимический журнал
Abstract / Full Text

A comparative study of electrotransport and mechanical properties in the system (1 – x)CsH2PO4x fluoropolymer (x = 0–0.25 mass fraction) is carried out. As the polymeric additive, ultradispersed polytetrafluoroethylene Forum, a copolymer of polyvinylidene fluoride and hexafluoropropylene, and a copolymer of tetrafluoroethylene and polyvinylidene fluoride are studied. It is shown that the fluoropolymers serve as the chemically inert and thermally stable matrix for CsH2PO4. In these polymer systems, the protonic conductivity is lower as compared with CsH2PO4 as a result of the conductor–insulator percolation effect. However, the improvement of mechanical and hydrophobic properties makes the composites more promising as compared with the pure salt CsH2PO4.

Author information
  • Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

    I. N. Bagryantseva, Yu. E. Kungurtsev, D. O. Dormidonova & V. G. Ponomareva

  • Novosibirsk State University, Novosibirsk, Russia

    I. N. Bagryantseva & Yu. E. Kungurtsev

  1. Baranov, A.I., Shuvalov, L.A., and Shchagina, N.M., Superionic conduction and phase transitions in CsHSO4 and CsHSeO4 crystals, Pis’ma Zh. Eksp. Teor. Fiz., 1982, vol. 36(11), p. 381.
  2. Uesu, Y. and Kobayashi, J., Crystal-structure and ferroelectricity of cesium dihydrogen phosphate CsH2PO4, Phys. Status Solidi A, 1976, vol. 34(2), p. 475.
  3. Baranov, A.I., Khiznichenko, V.P., Sandler, V.A., and Shuvalov, L.A., Frequency dielectric-dispersion in the ferroelectric and superionic phases of CsH2PO4, Ferroelectrics, 1988, vol. 81, p. 1147.
  4. Uda, T. and Haile, S.M., Thin-membrane solid-acid fuel cell, Electrochem. Lett., 2005, vol. 8, p. 245.
  5. Boysen, D.A., Uda, T., Chisholm, C.R.I., and Haile, S.M., High performance solid acid fuel cells through humidity stabilization, Science, 2004, vol. 303, p. 68.
  6. Haile, S.M., Chisholm, C.R.I., Sasaki, K., Boysen, D.A., and Uda, T., Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes, Faraday Discuss., 2007, vol. 134, p. 17.
  7. Uda, T., Boysen, D.A., Chisholm, C.R.I., and Haile, S.M., Alcohol fuel cells at optimal temperatures, Electrochem. Solid-State Lett., 2006, vol. 9, p. A261.
  8. Qing, G., Kikuchi, R., Takagaki, A., Sugawara, T., and Oyama, S.T., CsH2PO4/epoxy composite electrolytes for intermediate temperature fuel cells, Electrochim. Acta, 2015, vol. 169, p. 219.
  9. Navarrete, L., Yoo, C.-Y., and Serra, J.M., Comparative study of epoxy-CsH2PO4 composite electrolytes and porous metal based electrocatalysts for solid acid electrochemical cells, Membranes, 2021, vol. 11, p. 196.
  10. Qing, G., Kikuchi, R., Takagaki, A., Sugawara, T., and Oyama, S.T., CsH2PO4/polyvinylidene fluoride composite electrolytes for intermediate temperature fuel cells, J. Electrochem. Soc., 2014, vol. 161, F451.
  11. Loginov, B.A., Udivitel’nyi mir ftorpolimerov [Wonderful World of Fluoropolymers], Moscow: Devyatyi Element, 2009.
  12. Nudel'man, Z.N., Ftorkauchuki: osnovy, pererabotka, primeneniye ([Fluorocaouchoucs: fundamentals, processing, application], Moscow: PIF RIAS, 2007.
  13. Nunes-Pereira, J., Ribeiro, S., Ribeiro, C., Gombek, C.J., Gama, F.M., Gomes, A.C., Patterson, D.A., and Lanceros-Mendez, S., Poly(vinylidene fluoride) and copolymers as porous membranes for tissue engineering applications, Polym. Test., 2015, vol. 44, p. 234.
  14. Fu, Y., Hou, M., Xu, H., Hou, Z., Ming, P., Shao, Z., and Yi, B., Ag–polytetrafluoroethylene composite coating on stainless steel as bipolar plate of proton exchange membrane fuel cell, J. Power Sources, 2008, vol. 182, p. 580.
  15. Bouznik, V.M., Kirik, S.D., Solovyovv, L.A., and Tsvetnikov, A.K., A crystal structure of ultra-dispersed form of polytetrafluoroethylene based on X-ray powder diffraction data, Powder Diffr., 2004, vol. 19, p. 219.
  16. Drobny, J.G., Technology of Fluoropolymers, 2nd ed., Boca Raton: CRC, 2009.
  17. Bagryantseva, I.N., Ponomareva, V.G., and Lazareva, N.P., Proton-conductive membranes based on CsH2PO4 and ultra-dispersed polytetrafluoroethylene, Solid State Ionics, 2019, vol. 329, p. 61.
  18. Bagryantseva, I.N., Ponomareva, V.G., and Khusnutdinov, V.R., Intermediate temperature proton electrolytes based on cesium dihydrogen phosphate and poly(vinylidenefluoride-co-hexafluoropropylene), J. Mater. Sci., 2021, vol. 56, p. 14196.