Статья
2016

Electrochemical properties of Bi4Ti3 – x Cr x O12 – 0.5x (0.4 ≤ x ≤ 1.2) solid solutions with a layered perovskite structure


N. A. Sekushin N. A. Sekushin , M. S. Koroleva M. S. Koroleva , I. V. Piir I. V. Piir
Российский электрохимический журнал
https://doi.org/10.1134/S1023193516110100
Abstract / Full Text

Chromium-containing bismuth titanates Bi4Ti3–x Cr x O12–δ (0 ≤ x ≤ 1.2) with a layered perovskite structure and with the number of layers in the perovskite-like unit m = 3 at x ≤ 0.5 and m = 4 at 0.5 < x ≤ 1.2 were synthesized by the solid state method. The electrochemical properties of Bi4Ti1.8Cr1.2O11.38 (m = 4) and Bi4Ti2.6Cr0.4O11.8 (m = 3) were studied by impedance spectroscopy and DC electric conductivity measurements in different gas media. The oxygen conductivity increased at temperatures (t) of 450–500°C. For the samples with m = 4 at t ≥ 500°C in the frequency range of the order of a few Hz, the imaginary part of impedance was inverted, which was explained by the electrochemical process on electrodes. At t ≥ 600°C a reversible breakdown of the Bi4Ti2.6Cr0.4O11.8 sample in an electric field of over 30 V/m was observed. It was concluded that the conductivity of Bi4Ti3–x Cr x O12–δ is of electron-ion type.

Author information
  • Institute of Chemistry, Komi Scientific Centre, Ural Branch, Russian Academy of Sciences, Syktyvkar, 167982, Russia

    N. A. Sekushin, M. S. Koroleva & I. V. Piir

References
  1. Aurivillius, B., Ark. Kemi, 1949, vol. 1, p. 499.
  2. Ting, J. and Kennedy, B.J., J. Phys.: Conf. Ser., 2010, vol. 251, p. 012029.
  3. Perez-Arrieta, L., Mendoza-Alvarez, M.E., Silva-Gonzalez, R., Alvarez-Fregozo, O., and Tabarez-Munoz, C., J. Mater. Res., 1999, vol. 14, p. 824.
  4. Hervoches, H., Snedden, A., Riggs, R., Kilcoyne, S.H., Manuel, P., and Lightfoot, Ph., J. Solid State Chem., 2002, vol. 164, p. 280.
  5. Pineda-Flores, J.L., Chavira, E., and Huanosta-Tera, A., Physica C, 2001, vols. 364–365, p. 674.
  6. Lomanova, N.A. and Gusarov, V.V., Inorg. Mater., 2011, vol. 47, p. 420.
  7. Sekushin, N.A., Koroleva, M.S., and Piir, I.V., Russ. J. Electrochem., 2015, vol. 51, p. 820.
  8. Giddings, A.T., Stennett, M.C., Reid, D.P., McCabe, E.E., Greaves, C., and Hyatt, N.C., J. Solid State Chem., 2011, vol. 184, p. 252.
  9. Koroleva, M.S., Piir, I.V., Grass, V.E., Beliy, B.A., Korolev, D.A., and Chezhina, N.V., Proc. Komi Sci. Centre, Ural Branch, Russ. Acad. Sci., 2012, no. 1, p. 24.
  10. Zhang, H., Chen, G., and Li, X., Solid State Ionics, 2009, vol. 180, p. 1599.
  11. Hou, J., Cao, R., Wang, Zh., Jiao, Sh., and Zhu, H., J. Mater. Chem., 2011, vol. 21, p. 7296.
  12. Takahashi, M., Noguchi, Y., and Miyayama, M., Solid State Ionics, vol. 172, p. 325.
  13. Sekushin, N.A., Russ. J. Electrochem., 2009, vol. 45, p. 1300.
  14. Barsoukov, E. and Macdonald, J.R., Impedance Spectroscopy. Theory, Experiment, and Application, New Jersey: Wiley, 2005.
  15. Sekushin, N.A., Russ. J. Electrochem., 2012, vol. 48, p. 927.
  16. Smyth, D.M., in Properties and Applications of Perovskite-Type Oxides, Tejuca, L.G. and Fierro, J.L.G., Eds., New York: Marcel Dekker, 1993, p. 47.