Статья
2017

Crystal growth of thin [Zn2(H2N-BDC)2(4-bpdb)] · 3DMF metal–organic framework nanostructure on functionalized surfaces: study of structure effect on methyldopa adsorption affinity


Azadeh Azadbakht Azadeh Azadbakht , Jalaledin Aali Jalaledin Aali , Amir Reza Abbasi Amir Reza Abbasi , Maryam Maghsudi Maryam Maghsudi
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517040024
Abstract / Full Text

Thin films of a three-dimensional porous Zn(II)-based metal–organic framework, [Zn2(NH2-BDC)2(4-bpdb)] · 3DMF (TMU-17-NH2), containing azine-functionalized pores, were deposited on surfaces of silk fiber via a stepwise manner. The effect of sequential dipping steps in growth of TMU-17-NH2 has been studied. These systems depicted a decrease in the size accompanying a decrease in the sequential dipping steps. The TMU-17-NH2 has been used as matrices for the adsorption and in vitro guest delivery of methyldopa (MD).

Author information
  • Department of Chemistry, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran

    Azadeh Azadbakht

  • Faculty of Chemistry, Razi University, 67194, Kermanshah, Islamic Republic of Iran

    Jalaledin Aali, Amir Reza Abbasi & Maryam Maghsudi

References
  1. Czaja, A.U., Trukhan, N., and Muller, U., Chem. Soc. Rev., 2009, vol. 38, pp. 1284–1293.
  2. Hashemi, L. and Morsali, A., Cryst. Eng. Comm., 2012, vol. 14, pp. 779–781.
  3. Amabilino, D.B. and Stoddart, J.F., Chem. Rev., 1995, vol. 95, pp. 2725–2828.
  4. Whitesides, G.M. and Laibinis, P.E., Langmuir, 1990, vol. 6, pp. 87–96.
  5. Porter, M.D., Bright, T.B., Allara, D.L., and Chidsey, C.E.D., J. Am. Chem. Soc., 1987, vol. 109, pp. 3559–3568.
  6. Abbasi, A.R., Akhbari, K., and Morsali, A., Ultrason. Sonochem., 2012, vol. 19, pp. 846–852.
  7. Abbasi, A.R. and Morsali, A., J. Inog. Organomet. Polym., 2010, vol. 20, pp. 825–832.
  8. Arnold, R., Azzam, W., Terfort, A., and Woell, C., Langmuir, 2002, vol. 18, pp. 3980–3992.
  9. Ulman, A., Chem. Rev., 1996, vol. 96, pp. 1533–1554.
  10. Lee, A.Y., Ulman, A., and Myerson, A.S., Langmuir, 2002, vol. 18, pp. 5886–5898.
  11. Xia, Y., Zhao, X.-M., and Whitesides, G.M., Microelectron. Eng., 1996, vol. 32, pp. 255–268.
  12. Rawlett, A.M., Hopson, T.J., Amlani, I., Zhang, R., Tresek, J., Nagahara, L.A., Tsui, R.K., and Goronkin, H., Nanotechnology, 2003, vol. 14, pp. 377–384.
  13. Ciurtin, D.M., Dong, Y.-B., Smith, M.D., Barclay, T., and zur Loye, H.-C., Inorg. Chem., 2001, vol. 40, pp. 2825–2834.
  14. Abbasi, A.R. and Noori, N., J. Inorg. Organomet. Polym., 2014, vol. 24, pp. 1096–1102.
  15. Meilikhov, M., Yusenko, K., Schollmeyer, E., Mayer, C., Buschmann, H.-J., and Fischer, R.A., Dalton Trans., 2011, vol. 40, pp. 4838–4841.
  16. Safarifard, V., Beheshti, S., and Morsali, A., Cryst. Eng. Comm., 2015, vol. 17, pp. 1680–1685.
  17. Abbasi, A.R. and Morsali, A., Ultrason. Sonochem., 2010, vol. 17, pp. 572–578.
  18. Abbasi, A.R. and Morsali, A., Ultrason. Sonochem., 2011, vol. 18, pp. 282–287.