Examples



mdbootstrap.com



 
Статья
2020

Nitrogen Doped Porous Reduced Graphene Oxide Hybrid as a Nanocarrier of Imatinib Anticancer Drug


N. Samimi TehraniN. Samimi Tehrani, M. MasoumiM. Masoumi, F. ChekinF. Chekin, M. Sharifzadeh BaeiM. Sharifzadeh Baei
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427220080157
Abstract / Full Text

Nowadays, the cancer is one of the world’s most devastating diseases. The researches shows carbon nanomaterials as carriers for selective and controlled drug release and therapeutic agents. In this work, we developed new polymeric carbon nanocarrier based on nitrogen doped porous reduced graphene oxide (N-prGO)-carboxymethyl cellulose (CMC) as nanocarrier (NG-CMC) to load anticancer drug, imatinib (IM). The FE-SEM images, cyclic voltammetry, and Raman and UV-Vis spectroscopy methods confirmed the loading of IM on the NG-CMC. The results showed efficient loading of IM, ~74% at pH 7.00, time 3 h and 1 : 1 ratio of IM to NG-CMC onto NG-CMC. The biopolymer presence of CMC onto surface of nanocarrier due to the presence of –OH and –COOH groups interacts by hydrogen binding and π–π stacking with IM and enhanced the loading process of IM. The ~58.4, ~23.7, and ~16.2% of IM could be released from the NG- CMC upon the pH 4.00, 7.00, and 9.00, respectively, after 20 h. Thus, the development of present nanocarrier because of its unique physicochemical properties and high surface area is an ideal candidate for nanoscale assembly and able to deliver anticancer agents into cells.

Author information
  • Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, 678, Amol, IranN. Samimi Tehrani, M. Masoumi & M. Sharifzadeh Baei
  • Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, 678, Amol, IranF. Chekin
References
  1. Ali, I., Nadeem Lone, M., Al-Othman, Z., Al-Warthan, A., and Marsin Sanagi, M., Curr. Drug Targets, 2015, vol. 16, p. 711. https://doi.org/10.1039/c7md00067g
  2. Siegel, R.L., Miller, K.D., and Jemal, A., J. Clin., 2015, vol. 65, p. 5. https://doi.org/10.3322/caac.21254
  3. Gheybi, F., Alavizadeh, S.sH., Rezayat, S.M., Zendedel, E., and Jaafari, M., Nanomed. Res. J., 2019, vol. 4, p. 29. https://doi.org/10.22034/nmrj.2019.01.005
  4. Jain, V., Jain, S., and Mahajan, S.C., Curr. Drug Deliv., 2015, vol. 12, p. 177. https://doi.org/10.2174/1567201811666140822112516
  5. Ali, I., Nadeem Lone, M., Suhail, M., Danish Mukhtar, S., and Asnin, L., Curr. Med. Chem., 2016, vol. 23, p. 2159. https://doi.org/10.2174/0929867323666160405111152
  6. Makharza, S.A., Cirillo, G., Vittorio, O., Valli, E., Farfalla, A., Curcio, M., Lemma, F., Nicoletta, F.P., El-Gendy, A.A., Goya, G.F., and Hampel, S. Pharmaceut., 2019, vol. 12, p. 76. https://doi.org/10.3390/ph12020076
  7. Hossen, S., Hossain, M.K., Basher, M.K., Mia, M.N.H., Rahman, M.T., and Uddin, M.J., J. Adv. Res., 2019, vol. 15, p. 1. https://doi.org/10.1016/j.jare.2018.06.005
  8. Ud Din, F., Aman, W., Ullah, I., Qureshi, O.S., Mustapha, O., Shafique, S., and Zeb, A., Int. J. Nanomed., 2017, vol. 12, p. 7291. https://doi.org/10.2147/IJN.S146315
  9. Nurgali, K., Jagoe, R.T., and Abalo, R., Fron. Pharm., 2018, vol. 9, p. 245. https://doi.org/10.1155/2020/7657625
  10. Nehoff, H., Parayath, N.N., Domanovitch, L., Taurin, S., and Greish, K., Int. J. Nanomed., 2014, vol. 9, p. 2539. https://doi.org/10.2147/IJN.S47129
  11. Ahmad, M.Z., Alkahtani, S.A., Akhter, S., Ahmad, F.J., Ahmad, J., Akhtar, M.S., Mohsin, N., and Abdel-Wahab, B.A., J. Drug Target., 2016, vol. 24, p. 273. https://doi.org/10.3109/1061186X.2015.1055570
  12. Bertoncello, K.T., Aguiar, G.P.S., Oliveira, J.V., and Siebel, A.M., Sci. Rep., 2018, vol. 8, p. 2645. https://doi.org/10.1038/s41598-018-26359-8
  13. Buttacavoli, M., Albanese, N.N., Di Cara, G., Alduina, R., Faleri, C., Gallo, M., and Cancemi, P., Oncotarget, 2018, vol. 9, p. 9685. https://doi.org/10.18632/oncotarget.23859
  14. Patra, J.K., Das, G., Fraceto, L.F., Campos, E.V.R., Pilar Rodriguez-Torres, M., Acosta-Torres, L.S., Diaz-Torres, L.A., Grillo, R., Swamy, M.K., Sharma, S., Habtemariam, S., and Shin, H.S., J. Nanobiotechnol., 2018, vol. 16, p. 71. https://doi.org/10.1155/2016/7617894
  15. James, A.R., Unnikrishnan, B.S., Priya, R., Joseph, M.M., Manojkumar, T.K., Raveendran Pillai, K., Shiji, R., Preethi, G.U., Kusumakumary, P., and Sreelekha, T.T., Tumor Biol., 2017, vol. 39, p. 1. https://doi.org/10.1155/2017/8534371
  16. Marslin, G., Revina, A.M., Khandelwal, V.K.M., Balakumar, K., Prakash, J., Franklin, G., and Sheeba, C.J., Int. J. Nanomed., 2015, vol. 10, p. 3163. https://doi.org/10.2147/IJN.S75962
  17. Mendonça, L.S., Moreira, J.N., De Lima, M.C.P., and Simoes, S., Biotechnol. Bioeng., 2010, vol. 107, p. 884. https://doi.org/10.1002/bit.22858
  18. Cerna, T., Stiborova, M., Adam, V., Kizek, R., and Eckschlager, T., J. Cancer Metastasis Treat., 2016, vol. 2, p. 407. https://doi.org/10.20517/2394-4722.2015.95
  19. Fubini, B., Ghiazza, M., and Fenoglio, I., Nanotoxicol., 2010, vol. 4, p. 347. https://doi.org/10.3109/17435390.2010.509519
  20. Kettiger, H., Schipanski, A., Wick, P., and Huwyler, J., Int. J. Nanomed., 2013, vol. 8, p. 3255. https://doi.org/10.2147/IJN.S49770
  21. Rocha Lindner, G., Bonfanti Santos, D., Colle, D., Gasnhar Moreira, E.L., Daniel Prediger, R., Farina, M., Kalil, N.M., and Mara Mainardes, R., Nanomed., 2015, vol. 10, p. 1127. https://doi.org/10.2217/nnm.14.165
  22. Özkan, S.A., Dedeoglu, A., Karadas, N., and Özkan, Y., Turk. J. Pharm. Sci., 2019, vol. 16, p. 481. https://doi.org/10.4274/tjps.galenos.2019.48751
  23. Son, J.S., Appleford, M., Ong, J.L., Wenke, J.C., Kim, J.M., Choi, S.H., and Oh, D.S., J. Control. Release, 2011, vol. 153, p. 133. https://doi.org/10.1016/j.jconrel.2011.03.010
  24. Somani, S., and Dufès, C., Nanomed., 2014, vol. 9, p. 2403. https://doi.org/10.2217/nnm.14.130
  25. Kaminskas, L.M., Boyd, B.J., and Porter, C.J., Nanomed., 2011, vol. 6, p. 1063. https://doi.org/10.2217/nnm.11.67
  26. Hu, Y., Li, K., Wang, L., Yin, S., Zhang, Z., and Zhang, Y., J. Control. Release, 2010, vol. 144, p. 75. https://doi.org/10.1016/j.jconrel.2010.02.005
  27. Kargar, M., Moghimipour, E., Ramezani, Z., and Handali, S., Annu. Res. Rev. in Biol., 2014, vol. 4, p. 1319. https://doi.org/10.9734/ARRB/2014/7611
  28. Casais-Molina, M.L., Cab, C., Canto, G., Medina, J., and Tapia, A., J. Nanomater., 2018, vol. 2018, p. 1. https://doi.org/10.1155/2018/2058613
  29. Chimene, D., Alge, D.L., and Gaharwar, A.K., Adv. Mater., 2015, vol. 27, p. 7261. https://doi.org/10.1002/adma.201502422
  30. Lee, Y., Bae, J.W., Thi, T.T.H., Park, K.M., and Park, K.D., Chem. Commun., 2015, vol. 51, p. 8876 https://doi.org/10.1039/C5CC02511G
  31. Lee, J.H., Lee, Y., Shin, Y.C., Kim, M.J., Park, J.H., Hong, S.W., Kim, B., Oh, J.W., Park, K.D., and Han, D.W., Appl. Spectrosc. Rev., 2016, vol. 51, p. 527 https://doi.org/10.1080/05704928.2016.1165686
  32. Cao, J., An, H., Huang, X., Fu, G., Zhuang, R., Zhu, L., Xie, J., and Zhang, F., Nanoscale, 2016, vol. 8, p. 0152. https://doi.org/10.1039/C6NR02012G
  33. Thapa, R.K., Youn, Y.S., Jeong, J.H., Choi, H.G., Yong, C.S. and Kim, J.O., Colloids Surf. B: Biointerfaces, 2016, vol. 143, p. 271 https://doi.org/10.1016/j.colsurfb.2016.03.045
  34. Nolan, H., Mendoza-Sanchez, B., Ashok Kumar, N., McEvoy, N., O’Brien, S., Nicolosi, V., and Duesberg, G.S., Phys. Chem. Chem. Phys., 2014, vol. 16, p. 2280. https://doi.org/10.1039/C3CP54877E
  35. Mane, S.R., J. Crit. Rev., 2019, vol. 6, p. 1. https://doi.org/10.22159/ijap.2019v11i6.34920
  36. Samrot, A.V., Jahnavi, T., Padmanaban, S., Philip, S.A., Burman, U., and Rabel, A.M., Appl. Nanosci., 2016, vol. 6, p. 1219. https://doi.org/10.1007/s13204-016-0536-9
  37. Bigucci, F., Abruzzo, A., Vitali, B., Saladini, B., Cerchiara, T., Gallucci, M.C., and Luppi, B., Int. J. pharm., 2015, vol. 478, p. 456. https://doi.org/10.1016/j.ijpharm.2014.12.008
  38. Cerchiara, T., Abruzzo, A., Parolin, C., Vitali, B., Bigucci, F., Gallucci, M.C., Nicoletta, F.P., and Luppi, B., Carbohydr. polym., 2016, vol. 143, p. 124. https://doi.org/10.1016/j.carbpol.2016.02.020
  39. Salem, W., Li, K., Krapp, C., Ingles, S.A., Bartolomei, M.S., Chung, K., Paulson, R.J., Nowak, R.A., and McGinnis, L.K., Sci. Rep., 2019, vol. 9, p. 2535. https://doi.org/10.1038/s41598-019-39134-0
  40. Iqbal, N., and Iqbal, N., Chemother. Res. Pract., 2014, vol. 2014, p. 1. https://doi.org/10.1155/2014/357027
  41. Zareyy, B., Chekin, F., and Fathi, Sh., Russ. J. Electrochem., 2019, vol. 55, p. 333. https://doi.org/10.1134/S102319351903011X
  42. Chekin, F., Singh, S.K., Vasilescu, A., Dhavale, V.M., Kurungot, S., Boukherroub, R., and Szunerits, S., ACS Sens., 2016, vol. 1, p. 1462. https://doi.org/10.1021/acssensors.6b00608
  43. Chekin, F., Myshin, V., Ye, R., Melinte, S., Singh, S.K., Kurungot, S., Boukherroub, R., and Szunerits, S., Anal. Bioanal. Chem., 2019, vol. 411, p. 1509. https://doi.org/10.1007/s00216-019-01611-w
  44. Chekin, F., Vasilescu, A., Jijie, R., Singh, S.K., Kurungot, S., Iancu, M., Badea, G., Boukherroub, R., and Szunerits, S., Sens. Actuators B, 2018, vol. 262, p. 180. https://doi.org/10.1016/j.snb.2018.01.215
  45. Nikkhah, Sh., Tahermansouri, H., and Chekin, F., Mater. Lett., 2018, vol. 211, p. 323. https://doi.org/10.1016/j.matlet.2017.10.037
  46. Hazhir, N., Chekin, F., Raoof, J.B., and Fathi, Sh., RSC Adv., 2019, vol. 9, p. 30729. https://doi.org/10.1039/c9ra04977k