Статья
2018
Abstract / Full Text

A model of conductivity of nanocomposite ceramics consisting of solid-electrolyte and dielectric phases is proposed based on the assumption that the conductivity of grain boundaries between the solid-electrolyte and dielectric phases is higher than the conductivity of the volume of particles in the solid-electrolyte phase and its grain boundaries. Taking into account the size of particles, the thickness of grain boundaries, and the bulk and grain-boundary conductivities, the grain size of composite ceramics for which the conductivity may exceed the conductivity of single-phase solid-electrolyte ceramics is assessed. For testing this model, the composite samples are synthesized based on dielectric magnesium oxide and solid-electrolyte cerium oxide doped with samarium oxide. It is shown that introduction of 50 mol % magnesium oxide into composite ceramics has virtually no effect on its conductivity as compared with single-phase solid-electrolyte ceramics. This result can be explained by assuming the appearance of accelerated transport routes for oxygen ions in grain boundaries between dielectric and solid-electrolyte phases. Further dispersion, optimization of the ratio, and increase in distribution homogeneity of components can confirm the validity of the proposed conductivity model and open up the possibility of preparation of oxide solid-electrolyte materials with higher conductivity.

Author information
  • Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Minsk, 220072, Belarus

    V. V. Vashook, I. V. Matsukevich & N. P. Krutko

  • Kurt-Schwabe-Institut für Mess- und Sensortechnik e.V. Meinsberg, Waldheim, 04736, Germany

    V. V. Vashook, J. Zosel, M. Schelter, J. Posseckardt, U. Guth & M. Mertig

  • Technische Universität Dresden, Institute of Physical Chemistry, Dresden, 01069, Germany

    E. Sperling

  • Lviv Polytechnic National University, Lviv, 79013, Ukraine

    L. O. Vasylechko

References
  1. Chebotin, V.N. and Perfilev, M.V., Elektrokhimiya tverdykh elektrolitov (Electrochemistry of Solid Electrolytes), Moscow: Khimiya, 1978 [in Russian].
  2. Ivanov-Shits, A.K. and Murin, I.V., Ionika tverdogo tela (Solid State Ionics) Vol. 1, St. Petersburg: SPb Univ., 2010 [in Russian]
  3. Ivanov-Shits, A.K., and Murin, I.V., Ionika tverdogo tela (Solid State Ionics) Vol. 2, St. Petersburg: SPb Univ., 2010 [in Russian].
  4. Uvarov, N.F., Kompositnye tverdye elektrolity (Composite Solid Electrolytes), Novosibirsk: SO RAN, 2008) [in Russian].
  5. Liang, C.C., Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes, J. Electrochem. Soc., 1973, vol. 126, p. 1289.
  6. Liang, C.C., US Patent H01M6/18, no. 3 713 897 (USA), 1973.
  7. Uvarov, N.F., Isupov, V.P., Sharma, V., and Shukla, A.K., Effect of morphology and particle size on the ionic conductivities of composite solid electrolytes, Solid State Ionics, 1992, vol. 51, p. 41.
  8. Uvarov, N.F., Bokhonov, B.B., Isupov, V.P., and Hairetdinov, E.F., Nanocomposite ionic conductors in the LiSO4–Al2O3 system, Solid State Ionics, 1994, vol. 74, p. 15.
  9. Chovdary, P., Tare, V.B., and Wagner, J.B., Electrical conduction in AgJ–Al2O3 composites, J. Electrochem. Soc., 1985, vol. 132, p. 123.
  10. Jow, T. and Wagner, J.B., The effect of dispersed alumina particles on the electrical conductivity of cuprous chloride, J. Electrochem. Soc., 1979, vol.126, p. 1963.
  11. Fujitsu, S., Miyayama, M., and Koumoto, K., Enhancement of ionic conduction in CaF2 and BaF2 by dispersion of Al2O3, J. Mater. Sci., 1985, vol. 20, p. 2103.
  12. Saito, Y. and Maier, J., Conductivity enhancement of CaF2 by grain boundary activation with Lewis acids, Solid State Ionics, 1996, vol. 86–88, p. 581.
  13. Guo, X. and Yuan, R-Z., Grain boundary ionic conduction of zirconia-based solid electrolyte: idea and practice, Mat. Sci. Lett., 1995, vol. 14, p. 499.
  14. Brosa, S., Bouwmeester, H.J.M., and Guth, U., Electrical conductivity and thermal behavior of solid electrolytes based on alkali carbonates and sulfates, Solid State Ionics, 1997, vol. 101–103, p. 1201.
  15. Gauthier, M. and Chamberland, A., Solid-State detectors for the potentiometric determination of gaseous oxides: I. Measurement in air, J. Electrochem. Soc., 1977, vol. 124, p. 1579.
  16. Maier, J., Enhancement of the ionic conductivity in solid-solid-dispersions by surface induced defects, Ber. Bunsen-Ges., 1984, vol. 88, p. 1057.
  17. Meyer, C., Baumann, R., Günther, A., Vashook, V., Schmiel, T., Guth, U., and Fasoulas, S., Development of a solid state sensor for nitrogen oxides with a nitrate electrolyte, Sens. Actuators, B, 2013, vol. 181, p. 77.
  18. Zhao, Y., Xia, C., Jia, L., Wang, Z., Li, H., Yu, J., and Li, Y., Recent progress on solid oxide fuel cell: Lowering temperature and utilizing non-hydrogen fuels, Int. J. Hydrogen Energy, 2013, vol. 38, p. 1649.
  19. Kudo, T. and Ohayashi, H., Oxygen ion conduction of the fluorite-type Ce1–xLnx02–x/2 (Ln = lanthanoid element), J. Electrochem. Soc., 1975, vol. 122, p. 142.
  20. Martin, M.C. and Mecartney, M.L., Grain boundary ionic conductivity of yttrium stabilized zirconia as a function of silica content and grain size, Solid State Ionics, 2003, vol. 161, p. 67.
  21. Kosacki, I., Rouleau, Ch.M., Becher, P.F., Bentley, J., and Lowndes, D.H., Nanoscale effects on the ionic conductivity in highly textured YSZ thin films, Solid State Ionics, 2005, vol. 176. p. 1319.
  22. Amosov, A.P., Borovinskaya, I.P., and Merganov, A.G., Poroshkovaya tekhnologiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza materialov, Uchebn. posobie (Powder Technology of the Self-Propagating High-Temperature Synthesis of Materials. Manual), Antsiferov, V.N. (Ed.), Moscow: Mashinostroenie-1, 2007 [in Russian].
  23. Vashook, V., Zosel, J., Sperling, E., Guth, U., and Mertig, M., Nanocomposite ceramics based on Ce0.9Gd0.1O1.95 and MgO, Solid State Ionics, 2016, vol. 288, p. 98.
  24. Banerjee, S., Sujatha Devi, P., Topwal, D., Mandal, S., and Menon, K., Enhanced ionic conductivity in Ce0.8Sm0.2O1.9: Unique effect of calcium Co-doping, Adv. Funct. Mater. 2007, vol. 17, p. 2847.
  25. Banerjee, S. and Sujatha Devi, P., Sinter-active nanocrystalline CeO2 powder prepared by a mixed fuel process: Effect of fuel on particle agglomeration, J. Nanopart. Res., 2007, vol. 9, p. 1097.
  26. Banerjee, S. and Sujatha Devi, P., Understanding the effect of calcium on the properties of ceriaprepared by a mixed fuel process, Solid State Ionics, 2008, vol. 179, p. 661.
  27. Basu, S., Sujatha Devi, P., and Maiti, H.S., Synthesis and properties of nanocrystalline ceria powders, J. Mater. Res., 2004, vol. 19, p. 3162.
  28. Williamson, G.K. and Hall, W.H., X-ray line broadening from filed aluminium and wolfram, Acta Metall., 1953, vol. 1, p. 22.
  29. Atkinson, A. and Ramos, T.M.G.M., Chemicallyinduced stresses in ceramic oxygen ion-conducting membranes, Solid State Ionics, 2000, vol. 129, p. 259.
  30. Zuev, A.Yu., Vylkov, A.I., Petrov, A.N. and Tsvetkov, D.S., Defect structure and defect-induced expansion of undoped oxygen deficient perovskite LaCoO3 − δ, Solid State Ionics, 2008, vol. 179, p. 1876.
  31. Zuev, A.Yu., Petrov, AN., Vylkov, A.I., and Tsvetkov, D.S., Oxygen nonstoichiometry and defect structure of undoped and doped lanthanum cobaltites, J. Mater. Sci., 2007, vol. 42, p. 1901.
  32. Hayashi, H., Suzuki, M., and Inaba, H. Thermal expansion of Sr-and Mg-doped LaGaO3, Solid State Ionics, 2000, vol. 128, p. 131.
  33. Nadeem, M., Akhrar, M.J., and Khan, A.Y., Effects of low frequency near metal-insulator transition temperatures on polycrystalline La0.65Ca0.35Mn1 − yFeyO3 (where y = 0.05–0.10) ceramic oxides, Solid State Commun., 2005, vol. 134, p. 431.
  34. Deleebeeck, L., Fournier, J. L., and Birss. V., Comparison of Sr-doped and Sr-free La1 − xSrxMn0.5Cr0.5O3 ± δ SOFC anodes, Solid State Ionics, 2010, vol. 181, p. 1229.
  35. Lee, Y.-K., Kin, J.-Y., Lee, Y.-K., Kim, I., Moon, H.-S., Park, J.-W., Jacobson, C.P., and Visco, S.J., Conditioning effects on La1–xSrxMnO3-yttria stabilized zirconia electrodes for thin-film solid oxide fuel cells, J. Power Sources, 2003, vol. 115, p. 219.
  36. Ortiz-Vitoriano, N., Ruiz de Larramendi, I., Ruiz de Larramendi, J. I., Arriortua, M. I., and Rojo, T., Synthesis and electrochemical performance of La0.6Ca0.4Fe1–xNixO3 (x = 0.1, 0.2, 0.3) material for solid oxide fuel cell cathode, J. Power Sources, 2009, vol. 192, p. 63.
  37. Mauvy, F., Lalanne, C., Bassat, J.-M., Grenier, J.-C., Zhao, H., Huo, L., and Stevens, P., Electrode properties of Ln2NiO4: AC impedance and DC polarization studies, J. Electrochem. Soc., 2006, vol. 153, p. A1547.
  38. Ruiz de Larramendi, I., Ortiz, N., López-Antón, R., and Ruiz de Larramendi, J.I., Structure and impedance spectroscopy of La0.6Ca0.4Fe0.8Ni0.2O3–δ thin films grown by pulsed laser deposition, J. Power Sources, 2007, vol. 171, p. 747.
  39. Barsoukov, E. and Macdonald, J.R., Solid state devices, in Impedance Spectroscopy–Theory, Experiment, and Applications, 2nd ed., Hoboken: Wiley, 2005, ch. 4.3, p. 282.
  40. Kudo, T. and Obayashi, H., Mixed electrical conduction in the fluorite-type Ce1 – xGdxO2 – x /2, J. Electrochem. Soc., 1976, vol. 123, p. 415.