Статья
2018

Simultaneous Determination of Epinephrine and Folic Acid Using the Fe3O4@SiO2/GR Nanocomposite Modified Graphite


Mohadeseh Safaei Mohadeseh Safaei , Hadi Beitollahi Hadi Beitollahi , Masoud Reza Shishehbore Masoud Reza Shishehbore
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518130402
Abstract / Full Text

A sensitive and convenient electrochemical sensor was developed for determination of epinephrine by using the Fe3O4@SiO2/GR nanocomposite modified graphite screen printed electrode, and its electrochemical behaviour was investigated by cyclic voltammetry, chronoamperometry and differential pulse voltammograms. Differential pulse voltammetry results exhibited the linear dynamic range of 5.0–1000.0 μM, with detection limits (S/N = 3) of 1.0 μM. The prepared electrode was successfully applied for simultaneous determination of epinephrine and folic acid in real samples.

Author information
  • Department of Chemistry, Faculty of Sciences, Islamic Azad University, Yazd Branch, Yazd, Iran

    Mohadeseh Safaei & Masoud Reza Shishehbore

  • Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

    Hadi Beitollahi

References
  1. Beitollahi, H. and Nekooei, S., Application of a modified CuO nanoparticles carbon paste electrode for simultaneous determination of isoperenaline, acetaminophen and N-acetyl-L-cysteine, Electroanalysis, 2016, vol. 28, p. 645.
  2. Dong, J., Liu, S., Fu, Y., and Wang, Q., Investigation of strain-induced modulation on electronic properties of graphene field effect transistor, Phys. Lett., 2017, vol. 381, p. 292.
  3. Yazici, E., Yanik, S., and Yilmaz, M.B., Graphene oxide nano-domain formation via wet chemical oxidation of grapheme, Carbon, 2017, vol. 111, p. 822.
  4. Beitollahi, H., Ebadinejad, F., Shojaie, F., and Torkzadeh- Mahani, M., A magnetic core–shell Fe3O4@SiO2/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of amlodipine and hydrochlorothiazide, Anal. Methods, 2016, vol. 8, p. 6185.
  5. Dong, L., Chen, W., Zheng, C, and Deng, N., Microstructure and properties characterization of tungsten–copper composite materials doped with grapheme, J. Alloys Compd., 2017, vol. 695, p. 1637.
  6. Carbone, M., Gorton, L., and Antiochia, R., An overview of the latest graphene-based sensors for glucose detection: the effects of graphene defects, Electroanalysis, 2015, vol. 27, p. 16.
  7. Beitollahi, H., Tajik, S., and Jahani, Sh., Electrocatalytic determination of hydrazine and phenol using a carbon paste electrode modified with ionic liquids and magnetic core–shell Fe3O4@SiO2/MWCNT nanocomposite, Electroanalysis, 2016, vol. 28, p. 1093.
  8. Qiu, H.J., Guan, Y., Luo, P., and Wang, Y., Recent advance in fabricating monolithic 3D porous graphene and their applications in biosensing and biofuel cells, Biosens. Bioelectron., 2017, vol. 89, p. 85.
  9. Bai, Y., Liu, M., Sun, J., and Gao, L., Fabrication of Ni–Co binary oxide/reduced graphene oxide composite with high capacitance and cyclicity as efficient electrode for supercapacitors, Ionics, 2016, vol. 22, p. 535.
  10. Beitollahi, H., Ghofrani Ivari, S., and Torkzadeh-Mahani, M., Voltammetric determination of 6-thioguanine and folic acid using a carbon paste electrode modified with ZnO–CuO nanoplates and modifier, Mater. Sci. Eng., C, 2016, vol. 69, p. 128.
  11. Fu, C., Li, M., Li, H., Li, C., Qu, C., and Yang, B., Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application, Mater. Sci. Eng., C, 2017, vol. 72, p. 425.
  12. Song, X., Shi, Q., Wang, H., Liu, S., Tai, C., and Bian, Z., Preparation of Pd–Fe/graphene catalysts by photocatalytic reduction with enhanced electrochemical oxidation–reduction properties for chlorophenols, Appl. Catal., B, 2017, vol. 203, p. 442.
  13. Beitollahi, H. and Garkani Nejad, F., Graphene oxide/ZnO nanocomposite for sensitive and selective electrochemical sensing of Levodopa and Tyrosine using modified graphite screen printed electrode, Electroanalysis, 2016, vol. 28, p. 2237.
  14. Osikoya, A.O., Parlak, O., Murugan, N.A., Dikio, E.D., Moloto, H., Uzun, L., Turner, A.P.F., and Tiwari, A., Acetylene-sourced CVD-synthesised catalytically active graphene for electrochemical biosensing, Biosens. Bioelectron., 2017, vol. 89, p. 496.
  15. Beitollahi, H. and Salimi, H., A triple electrochemical platform for simultaneous determination of isoproterenol, acetaminophen and tyrosine based on a glassy carbon electrode modified with hematoxylin and graphene, J. Electrochem. Soc., 2016, vol. 163, p. H1157.
  16. Wang, Z.H., Xia, J.F., Zhu, L.Y., Zhang, F.F., Guo, X.M., Li, Y.H., and Xia, Y.Z., The fabrication of poly(acridine orange)/graphene modified electrode with electrolysis micelle disruption method for selective determination of uric acid, Sens. Actuators, B, 2012, vol. 161, p. 131.
  17. Zhang, J.X., Gray, D.H., Lalonde, H., and Carr, N., Digital necrosis after lidocaine and epinephrine injection in the flexor tendon sheath without phentolamine rescue, J. Hand. Surg. Am., 2016, vol. 42, p. 119.
  18. Deakin, C.D., Yang, J., Nguyen, R., Zhu, J., Brett, S.J., Nolan, J.P., Perkins, G.D., Pogson, D.G., and Parnia, S., Effects of epinephrine on cerebral oxygenation during cardiopulmonary resuscitation: A prospective cohort study, Resuscitation, 2016, vol. 109, p. 138.
  19. Devadas, B., Rajkumar, M., and Chen, S.M., Electropolymerization of curcumin on glassy carbon electrode and its electrocatalytic application for the voltammetric determination of epinephrine and p-acetoaminophenol, Colloids Surf., B, 2014, vol. 116, p. 674.
  20. Thomas, T., Mascarenhas, R.J., D’Souza, O.J., Detriche, S., Meldialif, Z., and Martis, P., Pristine multiwalled carbon nanotubes/SDS modified carbon paste electrode as an amperometric sensor for epinephrine, Talanta, 2014, vol. 125, p. 352.
  21. Beitollahi, H., Mazloum Ardakani, M., Ganjipour, B., and Naeimi, H., Novel 2,2'-[1,2-ethanediyl-bis(nitriloethylidyne)]-bis-hydroquinone double-wall carbon nanotube paste electrode for simultaneous determination of epinephrine, uric acid and folic acid, Biosens. Bioelectron., 2008, vol. 24, p. 362.
  22. Jang, C.H., Clio, Y.B., Lee, J.S., Kim, G.H., Jung, W.K., and Pak, S.C., The effect of propofol infusion with topical epinephrine on cochlear blood flow and hearing: An experimental study, Int. J. Pediatr. Otorhinolaryngol., 2016, vol. 91, p. 23.
  23. Pradhan, P., Mascarenhas, R.J., Thomas, T., Namboothiri, I.N., D’Souza, O.J., and Meldialif, Z., Electropolymerization of bromothymol blue on carbon paste electrode bulk modified with oxidized multiwall carbon nanotubes and its application in amperometric sensing of epinephrine in pharmaceutical and biological samples, J. Electroanal. Chem., 2014, vol. 732, p. 30.
  24. Hassan, S.Y., Clinical features and outcome of epinephrine-induced Takotsubo syndrome: Analysis of 33 published cases, Cardiovasc. Revasc., Med., 2016, vol. 17, p. 450.
  25. Mahmoudi Moghaddam, H., Beitollahi, H., Tajik, S., and Soltani, H., Fabrication of a nanostructure based electrochemical sensor for voltammetric determination of epinephrine, uric acid and folic acid, Electroanalysis, 2015, vol. 27, p. 2620.
  26. Taei, M., Hasanpour, F., Tavakkoli, N., and Bahrameian, M., Electrochemical characterization of poly(fuchsine acid) modified glassy carbon electrode and its application for simultaneous determination of ascorbic acid, epinephrine and uric acid, J. Mol. Liq., 2015, vol. 211, p. 353.
  27. Lavanya, N., Fazio, E., Neri, F., Bonavita, A., Leonardi, S.G., Neri, G., and Sekar, C., Simultaneous electrochemical determination of epinephrine and uric acid in the presence of ascorbic acid using SnO2/graphene nanocomposite modified glassy carbon electrode, Sens. Actuators, B, 2015, vol. 221, p. 1412.
  28. Mohammadi, S., Beitollahi, H., and Mohadesi, A., Electrochemical behaviour of a modified carbon nanotube paste electrode and its application for simultaneous determination of epinephrine, uric acid and folic acid, Sens. Lett., 2013, vol. 11, p. 388.
  29. Lavanya, N., Fazio, E., Neri, F., Bonavita, A., Leonardi, S.G., Neri, G., and Sekar, C., Electrochemical sensor for simultaneous determination of ascorbic acid, uric acid and folic acid based on Mn–SnO2 nanoparticles modified glassy carbon electrode, J. Electroanal. Chem., 2016, vol. 770, p. 23.
  30. Santos, C., Gomes, P., Duarte, J.A., Almeida, M.M., Costa, M.E.V., and Fernandes, M.H., Development of hydroxyapatite nanoparticles loaded with folic acid to induce osteoblastic differentiation, Int. J. Pharm., 2017, vol. 516, p. 185.
  31. Kingsley, M.P., Desai, P.B., and Srivastava, A.K., Simultaneous electro-catalytic oxidative determination of ascorbic acid and folic acid using Fe3O4 nanoparticles modified carbon paste electrode, J. Electroanal. Chem., 2015, vol. 741, p. 71.
  32. Li, X., Tan, X., Yan, J., Hu, Q., Wu, J., Zhang, H., and Chen, X., A sensitive electrochemiluminescence folic acid sensor based on a 3D graphene/CdSeTe/Ru-doped silica nanocomposite modified electrode, Electrochim. Acta, 2016, vol. 187, p. 433.
  33. Wang, X., You, Z., Cheng, Y., Sha, H., Li, G., Zhu, H., and Sun, W., Application of nanosized gold and graphene modified carbon ionic liquid electrode for the 2+ (bpy)3 sensitive electrochemical determination of folic acid, J. Mol. Liq., 2015, vol. 204, p. 112.
  34. Teresa McGee, E.J., Sangakkara, A.R., and Diosady, L.L., Double fortification of salt with folic acid and iodine, J. Food Eng., 2017, vol. 198, p. 72.
  35. Rastakhiz, N., Beitollahi, H., Kariminik, A., and Karimi, F., Voltammetric determination of carbidopa in the presence of uric acid and folic acid using a modified carbon nanotube paste electrode, J. Mol. Liq., 2012, vol. 172, p. 66.
  36. Ananthi, A., Kumar, S.S., and Phani, K.L., Facile onestep direct electrodeposition of bismuth nanowires on glassy carbon electrode for selective determination of folic acid, Electrochim. Acta, 2015, vol. 151, p. 584.
  37. Ji, C., Walton, J., Sub, Y., and Tella, M., Simultaneous determination of plasma epinephrine and norepinephrine using an integrated strategy of a fully automated protein precipitation technique, reductive ethylation labeling and UPLC–MS/MS, Anal. Chim. Acta, 2010, vol. 670, p. 84.
  38. Zhu, K.Y., Fu, Q., Leung, K.W., Wong, Z.C.F., Choi, R.C.Y., and Tsim, K.W.K., The establishment of a sensitive method in determining different neurotransmitters simultaneously in rat brains by using liquid chromatography–electrospray tandem mass spectrometry, J. Chromatogr. B, 2011, vol. 879, p. 737.
  39. Chan, E.C.Y. and Ho, P.C., High-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometric method for the analysis of catecholamines and metanephrines in human urine, Mass Spectrom., 2000, vol. 14, p. 1959.
  40. Michalowski, J. and Halaburda, P., Flow-injection chemiluminescence determination of epinephrine in pharmaceutical preparations using raw apple juice as enzyme source, Talanta, 2001, vol. 55, p. 1165.
  41. Lin, C.E., Fang, I.J., Deng, Y., Jr., Liao, W.S., Cheng, H.T., and Huang, W.P., Capillary electrophoretic studies on the migration behavior of cationic solutes and the influence of interactions of cationic solutes with sodium dodecyl sulfate on the formation of micelles and critical micelle concentration, J. Chromatogr. A, 2004, vol. 1051, p. 85.
  42. Gupta, V.K., Jain, S., and Khurana, U., A PVC-based pentathia-15-crown-5 membrane potentiometric sensor for mercury(II), Electroanalysis, 1997, vol. 9, p. 478.
  43. Jain, A.K., Gupta, V.K., Radi, S., Singh, L.P., and Raisoni, J.R., A comparative study of Pb2+ sensors based on derivatized tetrapyrazole and calix[4]arene receptors, Electrochim. Acta, 2006, vol. 51, p. 2547.
  44. Gupta, V.K., Jain, A.K., Maheshwari, G., and Lang, H., Copper(II)-selective potentiometric sensor based on porphyrins in PVC matrix, Sens. Actuators, B, 2006, vol. 117, p. 99.
  45. Jain, A.K., Gupta, V.K., Singh L.P., and Khurana, U., Macrocycle based membrane sensors for the determination of cobalt(II) ions, Analyst, 1997, vol. 122, p. 583.
  46. Gupta, V.K., Singh, A.K., and Kumawat, L.K., Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion, Sens. Actuators, B, 2014, vol. 195, p. 98.
  47. Movlaee, K., Ganjali, M.R., Aghazadeh, M., Beitollahi, H., Hosseini, M., Shahabi, S., and Norouzi, P., Graphene nanocomposite modified glassy carbon electrode: As a sensing platform for simultaneous determination of methyldopa and uric acid, Int. J. Electrochem. Sci., 2017, vol. 12, p. 305.
  48. Gupta, V.K., Prasad, R., Mangla, R., and Kumar, P., New nickel(II) selective potentiometric sensor based on 5,7,12,14-tetramethyldibenzotetraazaannulene in a poly(vinyl chloride) matrix, Anal. Chim. Acta, 2000, vol. 420, p. 19.
  49. Prasad, R., Gupta, V.K., and Kumar, A., Metallotetraazaporphyrin based anion sensors: Regulation of sensor characteristics through central metal ion coordination, Anal. Chim. Acta, 2004, vol. 508, p. 61.
  50. Gupta, V.K., Agarwal, S., and Singhal, B., A review on the recent advances on potentimetric membrane sensors for pharmaceutical analysis, Comb. Chem. High Throughput Screening, 2011, vol. 14, p. 284.
  51. Jain, R., Gupta, V.K., Jadon, N., and Radhapyari, K., Voltammetric determination of cefixime in pharmaceuticals and biological fluids, Anal. Biochem., 2010, vol. 407, p. 79.
  52. Gupta, V.K., Jain, A.K., and Maheshwari, G., Novel aluminum(III) selective potentiometric sensor based on morin in poly(vinyl chloride) matrix, Talanta, 2007, vol. 72, p. 1469.
  53. Sadikoglu, M., Yilmaz, S., Kurt, I., Selvi, B., Sari, H., Erduran, N., Usta, E., and Saglikoglu, G., Electrocatalytic oxidation of hydrazine on poly(4-aminobenzene sulfonic acid)-modified glassy carbon electrode, Russ. J. Electrochem., 2016, vol. 52, p. 539.
  54. Gupta, V.K., Jain, A.K., Agarwal, S., and Maheshwari, G., An iron(III) ion selective sensor based on a μ bis (tridentate) ligand, Talanta, 2007, vol. 71, p. 1964.
  55. Goyal, R.N., Gupta, V.K., and Chatterjee, S., Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode, Sens. Actuators, B, 2010, vol. 149, p. 252.
  56. Gupta, V.K., Karimi-Maleh, H., and Roya Sadegh, R., Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor, Int. J. Electrochem. Sci., 2015, vol. 10, p. 303.
  57. Srivastava, S.K., Gupta, V.K., and Jain, S., Determination of lead using poly(vinyl chloride) based crown ether membrane, Analyst, 1995, vol. 120, p. 495.
  58. Gupta, V.K., Sethi, B., Sharma, R.A., Agarwal, S., and Bharti, A., Mercury selective potentiometric sensor based on low rim functionalized thiacalix[4]arene as a cationic receptor, J. Mol. Liq., 2013, vol. 177, p. 114.
  59. Motaghi, M.M., Beitollahi, H., Tajik, S., and Hosseinzadeh, R., Nanostructure electrochemical sensor for voltammetric determination of vitamin C in the presence of vitamin B6: Application to real sample analysis, Int. J. Electrochem. Sci., 2016, vol. 11, p. 7849.
  60. Gupta, V.K., Goyal, R.N., and Sharma, R.A., Anion recognition using newly synthesized hydrogen bonding disubstituted phenylhydrazone based receptors: Poly(vinyl chloride) based sensor for acetate, Talanta, 2008, vol. 76, p. 859.
  61. Jain, A.K., Gupta, V.K., Sahoo B.B., and Singh, L.P., Copper(II)-selective electrodes based on macrocyclic compounds, Anal. Proc. incl. Anal. Commun., 1995, vol. 32, p. 99.
  62. Gupta, V.K., Mergu, N., Kumawat, L.K., and Singh, A.K., Selective naked-eye detection of magnesium(II) ions using a coumarin-derived fluorescent probe, Sens. Actuators, B, 2015, vol. 207, p. 216.
  63. Khani, H., Rofouei, M.K., Arab, P., Gupta, V.K., and Vafaei, Z., Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: Application to potentiometric monitoring of mercury ion(II), J. Hazard. Mater., 2010, vol. 183, p. 402.
  64. Gupta, V.K., Jain, A.K., and Kumar, P., PVC-based membranes of N,N'-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane as Pb(II)-selective sensor, Sens. actuators, B, 2006, vol. 120, p. 259.
  65. Kurmaz, V.A. and Gul’tyai, V.P., Electrode reactions and electroanalysis of organomercury compounds, Russ. Chem. Rev., 2010, vol. 79, p. 307.
  66. Gupta, V.K., Kumar, S., Singh, R., Singh, L.P., Shoora, S.K., and Sethi, B., J. Mol. Liq., 2014, vol. 195, p. 65.
  67. Karthikeyan, S., Gupta, V.K., Boopathy, R., Titus, A., and Sekaran, G., A new approach for the degradation of high concentration of aromatic amine by heterocatalytic fenton oxidation: Kinetic and spectroscopic studies, J. Mol. Liq., 2012, vol. 173, p. 153.
  68. Gupta, V.K., Singh, A.K., and Kumawat, L.K., Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion, Sens. Actuators, B, 2014, vol. 195, p. 98.
  69. Srivastava, S.K., Gupta, V.K., and Jain, S., PVC-based 2,2,2-cryptand sensors for zinc ions, Anal. Chem., 1996, vol. 68, p. 1272.
  70. Gupta, V.K., Singh, A.K., Mehtab, S., and Gupta, B.A., A cobalt(II) selective PVC membrane based on a Schiff base complex of N,N-bis (salicylidene)-3,4-diaminotoluene, Anal. Chim. Acta, 2006, vol. 566, p. 5.
  71. Jahani, Sh. and Beitollahi, H., Selective detection of dopamine in the presence of uric acid using NiO nanoparticles decorated on graphene nanosheets modified screen-printed electrodes, Electroanalysis, 2016, vol. 28, p. 2022.
  72. Gupta, V.K., Mergu, N., Kumawat, L.K., and Singh, A.K., A reversible fluorescence “off–on–off” sensor for sequential detection of aluminum and acetate/fluoride ions, Talanta, 2015, vol. 144, p. 80.
  73. Jain, A.K., Gupta, V.K., Khurana U., and Singh, L.P., A new membrane Sensor for UO2+, based on 2-Hydroxyacetophenoneoxime-thioureatrioxane resin, Electroanalysis, 1997, vol. 9, p. 857.
  74. Gupta, V.K., Pathania, D., Agarwal, S., and Sharma, S., Decolorization of hazardous dye from water system using chemical modified Ficus carica adsorbent, J. Mol. Liq., 2012, vol. 174, p. 86.
  75. Peng, D., Hu, B., Kang, M., Wang, M., He, L., Zhang, Z., and Fang, S., Electrochemical sensors based on gold nanoparticles modified with rhodamine B hydrazide to sensitively detect Cu(II), Appl. Surf. Sci., 2016, vol. 390, p. 422.
  76. Gupta, V.K., Jain, A.K., Agarwal, P.K.S., and Maheshwari, G., Chromium(III)-selective sensor based on tri-o-thymotide in PVC matrix, Sens. Actuators, B, 2006, vol. 113, p. 182.
  77. Goyal, R.N., Gupta, V.K., and Bachheti, N., Fullerene-C60-modified electrode as a sensitive voltammet ric sensor for detection of nandrolone, Anal. Chim. Acta, 2007, vol. 597, p. 82.
  78. Gupta, V.K., Gupta, V.K., Al Khayat, M., and Gupta, B., Neutral carriers based polymeric membrane electrodes for selective determinati on of mercury(II), Anal. Chim. Acta, 2007, vol. 590, p. 81.
  79. Esfandiari Baghbamidi, S., Beitollahi, H., Tajik, S., and Hosseinzadeh, R., Voltammetric sensor based on 1-Benzyl-4-ferrocenyl-1H-[1,2,3]-triazole/carbon nanotube modified glassy carbon electrode; Detection of hydrochlorothiazide in the presence of propranolol, Int. J. Electrochem. Sci., 2016, vol. 11, p. 10874.
  80. Gupta, V.K., Ganjali, M.R., Norouzi, P., Khani, H., Nayak, A., and Agarwal, S., Electrochemical analysis of some toxic metals and drugs by ion selective electrodes, Crit. Rev. Anal. Chem., 2011, vol. 41, p. 282.
  81. Gupta, V.K., Mittal, A., Malviya, A., and Mittal, J., Adsorption of carmoisine A from wastewater using waste materials—Bottom ash and de-oiled soya, J. Colloid Interface Sci., 2009, vol. 355, p. 24.
  82. Gupta, V.K., Jain, S., and Khurana, U., A PVC-based pentathia-15-crown-5 membrane potentiometric sensor for mercury(II), Electroanalysis, 1997, vol. 9, p. 478.
  83. Mohamed, M.E., Modified carbon paste electrode for potentiometric determination of aluminium ion in spiked real water sample, Russ. J. Electrochem., 2016, vol. 52, p. 754.
  84. Gupta, V.K., Jain S., and Chandra, S., Chemical sensor for lanthanum(III) determination using Aza Crown as Ionophore in poly(vinyl chloride) matrix, Anal. Chim. Acta, 2003, vol. 486, p. 199.
  85. Gupta, V.K., Chandra, S., and Mangla, R., Dicyclohexano-18-crown-6 as active material in PVC matrix membrane for the fabrication of cadmium selective potentiometric sensor, Electrochim. Acta, 2002, vol. 47, p. 1579.
  86. Gupta, V.K., Mangla, R., Khurana U., and Kumar, P., Determination of uranyl Ions using poly(vinyl chloride) based 4-tert-butylcalix[6]arene membrane sensor, Electroanalysis, 1999, vol. 11, p. 573.
  87. Hummers, W.S. and Offeman, R.E., Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, vol. 80, p. 1339.
  88. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., N.Y.: Wiley, 2001.