Статья
2020

Three-Layered Membranes for Planar Solid Oxide Fuel Cells of the Electrolyte-Supported Design: Characteristics and Applications


E. A. Agarkova E. A. Agarkova , D. A. Agarkov D. A. Agarkov , I. N. Burmistrov I. N. Burmistrov , O. Yu. Zadorozhnaya O. Yu. Zadorozhnaya , D. V. Yalovenko D. V. Yalovenko , Yu. K. Nepochatov Yu. K. Nepochatov , S. I. Bredikhin S. I. Bredikhin
Российский электрохимический журнал
https://doi.org/10.1134/S1023193520020020
Abstract / Full Text

Three-layered ceramic membranes based on stabilized zirconia for planar solid-oxide fuel cell (SOFC) are prepared by the tape casting method. The outer layers containing 94 mol % ZrO2–6 mol % Sc2O3 provide the enhanced mechanical stability; the inner layer has the composition of 89 mol % ZrO2–10 mol % Sc2O3–1 mol % Y2O3 which has the highest anionic conductivity in the series of solid solutions ZrO2–Y2O3–Sc2O3. Studying the mechanical characteristics shows that the ultimate strength (bending strength) of these membranes much exceeds the value typical of single-layered samples. The anionic conductivity of three-layered ceramics is studied by the impedance spectroscopy in the frequency range from 1Hz to 1 MHz. Membrane-electrode assemblies for SOFCs are fabricated and their electrochemical properties are studied under the conditions of fuel cell operation.

Author information
  • Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    E. A. Agarkova, D. A. Agarkov, I. N. Burmistrov, D. V. Yalovenko & S. I. Bredikhin

  • Moscow Institute of Physics and Technology (State University), 117303, Dolgoprudnyi, Moscow oblast, Russia

    D. A. Agarkov, I. N. Burmistrov & S. I. Bredikhin

  • NEVZ-Ceramics, 630048, Novosibirsk, Russia

    O. Yu. Zadorozhnaya & Yu. K. Nepochatov

References
  1. Choudhury, A., Chandra, H., and Arora, A., Application of solid oxide fuel cell technology for power generation—A review, Renewable Sustainable Energy Rev., 2013, vol. 20, p. 430.
  2. Stelter, M., Reinert, A., Mai, B.E., and Kuznecov, M., Engineering aspects and hardware verificat solid oxide fuel cell stack design, J. Power Sources, 2006, vol. 154, p. 448.
  3. Menzler, N.H., Malzbender, J., Schoderböck, P., Kauert, R., and Buchkremer, H.P., Sequential tape casting of anode-supported solid oxide fuel cells, Fuel Cells, 2014, vol. 14, p. 96.
  4. Fleischhauer, F., Bermejo, R., Danzer, R., Mai, A., Graule, T., and Kuebler, J., Strength of an electrolyte supported solid oxide fuel cell, J. Power Sources, 2015, vol. 297, p. 158.
  5. Hsieh, Y.D., Chan, Y.H., and Shy, S.S., Effects of pressurization and temperature on power generating characteristics and impedances of anode-supported and electrolyte-supported planar solid oxide fuel cells, J. Power Sources, 2015, vol. 299, p. 1.
  6. Haydn, M., Ruettinger, M., Franco, T., Uhlenbruck, S., Jung, T., and Ortner, K., US Patent, 20160118680 A1, 2015.
  7. Burmistrov, I., Agarkov, D., Bredikhin, S., Nepochatov, Y., Tiunova, O., and Zadorozhnaya, O., Multilayered electrolyte-supported SOFC based on NEVZ-Ceramics membranes, ECS Trans., 2013, vol. 57, no. 1, p. 917.
  8. Burmistrov, I.N., Agarkov, D.A., Tsybrov, F.M., and Bredikhin, S.I., Preparation of membrane-electrode assemblies of solid oxide fuel cells by co-sintering of electrodes, Russ. J. Electrochem., 2016, vol. 52, p. 669.
  9. Burmistrov, I.N., Agarkov, D.A., Korovkin, E.V., Yalovenko, D.V., and Bredikhin, S.I., Fabrication of membrane-electrode assemblies for solid oxide fuel cells by joint sintering of electrodes at high temperature, Russ. J. Electrochem., 2017, vol. 53, p. 873.
  10. Tiunova, O.V., Zadorozhnaya, O.Yu., Nepochatov, Yu.K., Burmistrov, I.N., Kuritsyna, I.E., and Bredikhin, S.I., Ceramic membranes based on scandium-stabilized ZrO2 obtained by tape casting technique, Russ. J. Electrochem., 2014, vol. 50, p. 719.
  11. Sokolov, P.S., Karpyuk, P.V., Dosovitskiy, G.A., Volkov, P.A., Lyskov, N.V., Slyusar, I.V., and Dosovitskiy, A.E., Stabilized zirconia-based nanostructured powders for solid-oxide fuel cells, Russ. J. Eletrochem., 2018, vol. 54, p. 464.
  12. Kuritsyna, I.E., Bredikhin, S.I., Agarkov, D.A., Borik, M.A., Kulebyakin, A.V., Milovich, F.O., Lomonova, E.E., Myzina, V.A., and Tabachkova, N.Yu., Electrotransport characteristics of ceramic and single crystal materials with the (ZrO2)0.89(Sc2O3)0.10(Y2O3)0.01 composition, Russ. J. Electrochem., 2018, vol. 54, p. 481.
  13. Agarkov, D.A., Borik, M.A., Bredikhin, S.I., Kulebyakin, A.V., Kuritsyna, I.E., Lomonova, E.E., Milovich, F.O., Myzina, V.A., Osiko, V.V., Agarkova, E.A., and Tabachkova, N.Yu., Structure and transport properties of zirconia-based solid solution crystals co-doped with scandium and cerium oxides, Russ. J. Electrochem., 2018, vol. 54, p. 459.
  14. Agarkov, D.A., Borik, M.A., Bublik, V.T., Bredikhin, S.I., Chislov, A.S., Kulebyakin, A.V., Kuritsyna, I.E., Lomonova, E.E., Milovich, F.O., Myzina, V.A., Osiko, V.V., and Tabachkova, N.Yu., Structure and transport properties of melt grown Sc2O3 and CeO2 doped ZrO2 crystals, Solid State Ionics, 2018, vol. 322, p. 24.
  15. Fleischhauer, F., Bermejo, R., Danzer, R., Mai, A., Graule, T., and Kuebler, J., High temperature mechanical properties of zirconia tapes used for electrolyte supported solid oxide fuel cells, J. Power Sources, 2015, vol. 273, p. 237.
  16. Varanasi, C., Juneja, C., Chen, C., and Kumar, B., Electrical conductivity enhancement in heterogeneously doped scandia-stabilized zirconia, J. Power Sources, 2005, vol. 147(1–2), p. 128.
  17. Burmistrov, I., Agarkov, D., Tartakovskii, I., Kharton, V., and Bredikhin, S., Performance optimization of cermet SOFC anodes: an evaluation of nanostructured Ni, ECS Trans., 2015, vol. 68, no. 1, p. 1265.
  18. Agarkov, D.A., Bredikhin, S.I., Burmistrov, I.N., Kuritsyna, I.E., Nepochatov, Yu.K., and Tiunova, O.V., Russian Patent 161024, 2016.
  19. Borik, M.A., Bredikhin, S.I., Bublik, V.T., Kulebyakin, A.V., Kuritsyna, I.E., Lomonova, E.E., Milovich, F.O., Myzina, V.A., Osiko, V.V., Ryabochkina, P.A., and Tabachkova, N.Yu., Structure and conductivity of yttria and scandia doped zirconia crysrals grown by skull melting, J. Am. Ceram. Soc., 2017, vol. 100(12), p. 5536.