Examples



mdbootstrap.com



 
Статья
2022

2,4,5,6-Substituted 4,5-dihydro-1,2,4,5-tetrazin-3(2H)-ones as non-classical initiators of controlled radical polymerization of styrene


D. E. VotkinaD. E. Votkina, M. RolletM. Rollet, P. S. PostnikovP. S. Postnikov
Российский химический вестник
https://doi.org/10.1007/s11172-022-3563-6
Abstract / Full Text

A series of 2,4,5,6-substituted 4,5-dihydro-1,2,4,5-terazin-3(2H)-ones are studied as initiators of controlled radical polymerization of styrene at 100 and 120 °C. It has been established that not only electronic effects of substituents, but also other factors have a significant effect on the process, including the probability of side reactions of the verdazyl radical with the monomer, but not with the growing chain. In the course of experiments, high molecular weight polystyrene was obtained in a short time at moderate temperatures, which indicates high prospects for the use of verdazyl-based initiators in the controlled polymerization of olefins.

Author information
  • Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 30 prosp. Lenina, 634050, Tomsk, RussiaD. E. Votkina, M. E. Trusova, P. V. Petunin & P. S. Postnikov
  • CNRS, ICR, UMR 7273, Aix-Marseille University, Case 551, Avenue Escadrille Normandie-Niemen, 13397, Marseille Cedex 20, FranceM. Rollet, G. Audran & S. R. A. Marque
References
  1. L. J. Tan, W. Zhu, K. Zhou, Adv. Funct. Mater., 2020, 30, 1–54; DOI: https://doi.org/10.1002/adfm.202003062.
  2. K. Wang, K. Amin, Z. An, Z. Cai, H. Chen, H. Chen, Y. Dong, X. Feng, W. Fu, J. Gu, Y. Han, D. Hu, R. Hu, D. Huang, F. Huang, F. Huang, Y. Huang, J. Jin, X. Jin, Q. Li, T. Li, Z. Li, Z. Li, J. Liu, J. Liu, S. Liu, H. Peng, A. Qin, X. Qing, Y. Shen, J. Shi, X. Sun, B. Tong, B. Wang, H. Wang, L. Wang, S. Wang, Z. Wei, T. Xie, C. Xu, H. Xu, Z. K. Xu, B. Yang, Y. Yu, X. Zeng, X. Zhan, G. Zhang, J. Zhang, M. Q. Zhang, X. Z. Zhang, X. Zhang, Y. Zhang, Y. Zhang, C. Zhao, W. Zhao, Y. Zhou, Z. Zhou, J. Zhu, X. Zhu, B. Z. Tang, Mater. Chem. Front., 2020, 4, 1803–1915; DOI: https://doi.org/10.1039/d0qm00025f.
  3. K. Parkatzidis, H. S. Wang, N. P. Truong, A. Anastasaki, Chem., 2020, 6, 1575–1588; DOI: https://doi.org/10.1016/j.chempr.2020.06.014.
  4. P. Gurnani, S. Perrier, Prog. Polym. Sci., 2020, 102, 101209; DOI: https://doi.org/10.1016/j.progpolymsci.2020.101209.
  5. N. Corrigan, K. Jung, G. Moad, C. J. Hawker, K. Matyja-szewski, C. Boyer, Prog. Polym. Sci., 2020, 111, 101311; DOI: https://doi.org/10.1016/j.progpolymsci.2020.101311.
  6. E. G. Bagryanskaya, S. R. A. Marque, in RSC Polym. Chem. Ser., Royal Society of Chemistry, Cambridge, 2016, pp. 45–113; DOI: https://doi.org/10.1039/9781782622635-00045.
  7. M. Edeleva, G. Audran, S. Marque, E. Bagryanskaya, Materials, 2019, 12, 688; DOI: https://doi.org/10.3390/ma12050688.
  8. G. Audran, S. R. A. Marque, P. Mellet, Acc. Chem. Res., 2020, 53, 2828–2840; DOI: https://doi.org/10.1021/acs.accounts.0c00457.
  9. H. R. Lamontagne, B. H. Lessard, ACS Appl. Polym. Mater., 2020, 2, 5327–5344; DOI: https://doi.org/10.1021/acsapm.0c00888.
  10. G. N. Lipunova, E. G. Fedorchenko, A. N. Tsmokalyuk, O. N. Chupakhin, Russ. Chem. Bull., 2020, 69, 1203–1222; DOI: https://doi.org/10.1007/s11172-020-2892-6.
  11. E. K. Y. Chen, S. J. Teertstra, D. Chan-Seng, P. O. Otieno, R. G. Hicks, M. K. Georges, Macromolecules, 2007, 40, 8609–8616; DOI: https://doi.org/10.1021/ma0708139.
  12. G. Rayner, T. Smith, W. Barton, M. Newton, R. J. Deeth, I. Prokes, G. J. Clarkson, D. M. Haddleton, Polym. Chem., 2012, 3, 2254–2260; DOI: https://doi.org/10.1039/c2py20217d.
  13. B. Yamada, H. Tanaka, K. Konishi, T. Otsu, J. Macromol. Sci. Part A, 1994, 31, 351–366; DOI: https://doi.org/10.1080/10601329409351524.
  14. D. E. Votkina, P. V. Petunin, M. E. Trusova, P. S. Postnikov, G. Audran, S. R. A. Marque, Phys. Chem. Chem. Phys., 2020, 22, 21881–21887; DOI: https://doi.org/10.1039/d0cp03151h.
  15. B. Yamada, Y. Nobukane, Y. Miura, Polym. Bull., 1998, 41, 539–544; DOI: https://doi.org/10.1007/s002890050399.