Статья
2017

The effect of monoethanolamine on conductivity and efficiency of electrodialysis of acid and salt solutions


E. G. Novitskii E. G. Novitskii , V. P. Vasilevskii V. P. Vasilevskii , E. A. Grushevenko E. A. Grushevenko , A. V. Volkov A. V. Volkov , V. I. Vasil’eva V. I. Vasil’eva
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517040103
Abstract / Full Text

Experimental studies of the specific conductivity (SC) are carried out for aqueous solutions of organic and inorganic acids and salts including those containing different amounts of monoethanolamine (MEA), which model the absorption solutions used in purification of gas mixtures from carbon dioxide and containing heatstable salts (HSS). It is shown that the addition of MEA to binary aqueous electrolyte solutions gives rise to changes in the SC: in the MEA concentration range from 0 to ∼1.5 M, the SC of the resulting ternary solutions increases but decreases again with the further increase in MEA concentration. This behavior of SC is typical also of aqueous binary amine solutions. It is shown that in the presence of MEA, the quantitative removal of dissolved acids and salts proceeds faster with the simultaneous increase in the specific energy consumption by a factor of 7–9 (up to 85.7–93.6 kJ/dm3). It is assumed that the reason for the decrease in SC and the enhancement of energy consumption at electrodialysis of mixed solutions is the probable existence of monoethanolamine both as free solvated ions and neutral molecules and as self-assembled associated structures (ion pairs and more complex particles) which involve also the ions of salts dissolved in amine-containing solutions.

Author information
  • Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, 119991, Russia

    E. G. Novitskii, V. P. Vasilevskii, E. A. Grushevenko & A. V. Volkov

  • Voronezh State University, Voronezh, 394036, Russia

    V. I. Vasil’eva

References
  1. Kohl, F.L. and Nielsen, R., Gas Purification, 5th Edition, Houston: Galf Professional, 1997.
  2. Samanta, A., Shimizu, G.K.H., Sarkar, P., and Gupta, R., Ind. Eng. Chem. Res., 2012, vol. 51, p. 1438.
  3. Merkel, T.C., Lin, H., Wei, X., and Baker, R., J. Membr. Sci., 2010, vol. 359, nos. 1-2, p. 126.
  4. Wang, M., Laval, A., Stephenson, P., Sudders, J., and Ramshaw, C., Chem. Eng. Res. Des., 2011, vol. 89, no. 9, p. 1609.
  5. Vakk, E.G., Shuklin, G.V., and Leites, I.L., Poluchenie tekhnologicheskogo gaza dlya proizvodstva ammiaka, metanola, vodoroda i vysshikh uglevodorodov (Synthesis of Technological Gas for Production of Ammonia, Methanol, and Higher Hydrocarbons), Moscow: Khimiya, 2011.
  6. Stratmann, H., Desalination, 2010, vol. 264, p. 268.
  7. Dumee, L., Scholes, C., Stevens, G., and Kentish, S., Int. J. Greenhouse Gas Control, 2012, vol. 10, p. 443.
  8. Gregory, R.Ig. and Cohen, M.F., Europ. Patent 0286143, 1988.
  9. Bedell, S.A. and Tsai, S.S.K., US Patent 4814051, 1989.
  10. Cohen, M.F. and Gregory, R.A., US Patent 5910611, 1999.
  11. Zabolotskii, V.I., Gnusin, N.P., Pis’menskii, V.F., Omel’chenko, Yu.N., Strelets, Yu.G., and Kovalev, A.S., Zh. Prikl. Khim., 1982, vol. 55, p. 1105.
  12. Zabolotskii, V.I., Gnusin, N.P., El’nikova, L.F., and Omel’chenko, Yu.N., Zh. Prikl. Khim., 1985.
  13. Vasilevskii, V.P., Volkov, V.V., and Novitskii, E.G., Ser.: Kritich. Tekhnol., Membrany, 2009, vol. 44, no. 4, p. 14.
  14. Handagama, N.B., Baburao, B., Vitse, F., Bedell, S.A., Leister, J.W., and Dugas, R., US Patent 20120235087 A1, 2012.
  15. Lim, J., Aguiar, A., Scholes, C.A., Dumee, L.F., Stevens, G.W., and Kentish, S.E., Ind. Eng. Chem. Res., vol. 53, no. (49), p. 19313.
  16. Novitsky, E.G., Vasilevsky, V.P., Bazhenov, S.D., Grushevenko, E.A., Vasilyeva, V.I., and Volkov, A.V., Pet. Chem., 2014, vol. 54, p. 680.
  17. Semenova, T.A., Leites, I.L., Aksel’rod, Yu.V., Markina, M.I., Sergeev, S.P., and Khar’kovskaya, E.N., Ochistka tekhnologicheskikh gazov (Cleaning of Technological Gases), 2nd Edition, Moscow: Khimiya, 1977.
  18. Vasilevskii, V.P., Novitskii, E.G., and Volkov, V.V., Ser.: Kritich. Tekhnol., Membrany, 2010, vol. 48, no. 4, p. 26.
  19. Davisa, J. and Rochelle, G., Energy Procedia, 2009, vol. 1, p. 327.
  20. Nikonenko, V., Kovalenko, A., Urtenov, M., Pismenskaya, N., Han, J., Sistat, P., and Pourcelly, G., Desalination, 2014, vol. 342, p. 85.
  21. Zabolotskii, V.I. and Demin, A., Russ. J. Electrochem., 2011, vol. 47, p. 32.
  22. Eliseeva, T.V. and Kharina, A.Yu., Russ. J. Electrochem., 2015, vol. 51, p. 63.
  23. Moser, P., Schmidt, S., and Stahl, K., Energy Procedia, 2011, vol. 4, p. 473.
  24. Volkov, A., Vasilevsky, V., Bazhenov, S., Volkov, V., Rieder, A., Unterberger, S., and Schallert, B., Energy Procedia, 2014, vol. 51, p. 148.
  25. Bazhenov, S., Vasilevsky, V., Rieder, A., Unterberger, S., Grushevenko, E., Volkov, V., Schallert, B., and Volkov, A., Energy Procedia, 2014, vol. 63, p. 6349.
  26. Bazhenov, S., Rieder, A., Schallert, B., Vasilevsky, V., Unterberger, S., Grushevenko, E., Volkov, V., and Volkov, A., Int. J. Greenhouse Gas Control, 2015, vol. 2, p. 593.
  27. Damaskin, B.B., Petrii, O.A., and Tsirlina, G.A., Elektrokhimiya (Electrochemistry), Moscow: Khimiya. Kolos S, 2006.
  28. Tanganov, B.B., Vzaimodeistviya v rastvorakh elektrolitov: modelirovanie sol’vatatsionnykh protsessov, ravnovesii v rastvorakh polielektrolitov i matematicheskoe prognozirovanie svoistv khimicheskikh sistem (Interactions in Electrolyte Solutions: Modeling of Solvation Processes, Equilibria in Polyelectrolyte Solutions and Mathematical Forecasting of Properties of Chemical Systems), Moscow: Akad. Estestvoznaniya, 2009.
  29. Baldanov, M.M., Tanganov, B.B., and Mokhosoev, M.V., Dokl. Akad. Nauk SSSR, 1989, vol. 308, no. 1, p. 106.