Examples



mdbootstrap.com



 
Статья
2019

On the Stability of Nanobubbles in Water


B. V. BoshenyatovB. V. Boshenyatov, S. I. KosharidzeS. I. Kosharidze, Yu. K. LevinYu. K. Levin
Российский физический журнал
https://doi.org/10.1007/s11182-019-01618-x
Abstract / Full Text

Conditions of stability of charged air nanobubbles in water are considered. Ranges of values of the charge and radius in which coalescence and division predominate are theoretically determined. The stability region is revealed in which the given processes are thermodynamically improbable. A comparison of the theory with the available experiment is performed. Based on the results of our analysis, it is concluded that the main stabilizing factor for nanosized particles is their surface charge.

Author information
  • Institute of Applied Mechanics of the Russian Academy of Sciences, Moscow, RussiaB. V. Boshenyatov, S. I. Kosharidze & Yu. K. Levin
References
  1. M. Chaplin, Water Structure and Science, Web site: www1. lsbu.ac.uk/water/water_structure_science.html (2018).
  2. S. Calgaroto, K. Q. Willberg, and J. Rubio, Minerals Eng., 60, 33–40 (2014).
  3. N. F. Bunkin and F. V. Bunkin, Usp. Fiz. Nauk, 186, No. 9, 933–952 (2016).
  4. K. S. Kleppestø, Numerical Investigations on Nanobubble Stability, Master of Science in Physics and Mathematics Thesis, Norwegian University of Science and Technology, Trondeheim (2015).
  5. S. I. Koshoridze and Yu. K. Levin, Nanosci. Technol. Int. J., 9, No. 1, 1–8 (2018); DOI: https://doi.org/10.1615/NanoSciTechnolIntJ.2018025819.
  6. A.K. Kikoin and I. K. Kikoin, Molecular Physics [in Russian], Nauka, Moscow (1976).
  7. S. I. Koshoridze and Yu. K. Levin, Nanosci. Technol. Int. J., 5, No. 3, 169–179 (2014).
  8. B. V. Boshenyatov, Dokl. Akad. Nauk, 427, No. 3, 321–323 (2009).