Abstract / Full Text

Oxygen transport (including oxygen mobility and surface reactivity) is one of the important factors governing electrochemical activity of solid oxide fuel cells electrodes as well as oxygen and hydrogen separation membranes based on materials with mixed oxide-ionic and electronic conductivity. In this work, oxygen mobility data obtained for a series of materials destined for such devices using modern techniques of oxygen isotope heteroexchange are summarized. Series of solid oxide fuel cells’ and membranes’ materials were studied by isotope exchange of their oxygen with 18O2 and C18O2 in isothermal and temperature-programmed modes using closed and flow reactors and data analysis based on developed model of oxygen diffusion and exchange. For solid electrolytes’ materials (Sc- and Ce-doped zirconia) as well as for proton-conducting materials [Ln5.5(Mo,W)O11.25], the effect of composition heterogeneity on the oxygen mobility was demonstrated. For Ln6 – xWO12 – δ, a strong effect of structure on the oxygen mobility was demonstrated. For oxides with asymmetric structure, where oxygen migration proceeds via cooperative mechanisms [La2(Mo,W)2O9, (Ln,Ca)2NiO4], the doping hampers the cooperative migration, resulting in oxygen mobility deterioration and sometimes forming additional slow diffusion channels. In the PrNi0.5Co0.5O3–Ce0.9Y0.1O2 nanocomposites that are materials of the solid oxide fuel cells’ cathode and functional layer of the oxygen separation membranes, two diffusion channels were observed, where more mobile oxygen corresponds to the fluorite phase and interfaces; less mobile, to the perovskite phase. This is due to special features of cations redistribution between the phases.

Author information
  • Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia

    V. A. Sadykov, E. M. Sadovskaya, N. F. Eremeev, P. I. Skriabin, A. V. Krasnov, Yu. N. Bespalko, S. N. Pavlova & Yu. E. Fedorova

  • Novosibirsk State University, Department of Natural Sciences, 630090, Novosibirsk, Russia

    V. A. Sadykov & E. M. Sadovskaya

  • Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, 620137, Yekaterinburg, Russia

    E. Yu. Pikalova

  • Ural Federal University, 620002, Yekaterinburg, Russia

    E. Yu. Pikalova

  • Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117991, Moscow, Russia

    A. V. Shlyakhtina

  1. Steele, B.C.H. and Heinzel, A., in Materials for fuel-cell technologies, in Materials for Sustainable Energy, Dusastre, V., Ed., World Scientific Publishing, Co-Published with Macmillan Publishers, UK, 2010, p. 224. https://doi.org/10.1142/9789814317665_0031.
  2. Basu, R.N., Materials for solid oxide fuel cells, in Recent Trends in Fuel Cell Science and Technology, Basu, S., Ed., New York: Springer, 2007, p. 286. https://doi.org/10.1007/978-0-387-68815-2_12
  3. Sadykov, V., Usoltsev, V., Fedorova, Y., Mezentseva, N., Krieger, T., Eremeev, N., Arapova, M., Ishchenko, A., Salanov, A., Pelipenko, V., Muzykantov, V., Ulikhin, A., Uvarov, N., Bobrenok, O., Vlasov, A., Korobeynikov, M., Bryazgin, A., Arzhannikov, A., Kalinin, P., Smorygo, O., and Thumm, M., Advanced sintering techniques in design of planar IT SOFC and supported oxygen separation membranes, in Sintering of Ceramics, Lakshmanan. A.. Ed., Vienna: IntechOpen, 2012, p. 121. https://doi.org/10.5772/34958
  4. Ormerod, R.M., Solid oxide fuel cells, Chem. Soc. Rev., 2003, vol. 32, p. 17. https://doi.org/10.1039/b105764m
  5. Sadykov, V.A., Pavlova, S.N., Kharlamova, T.S., Muzykantov, V.S., Uvarov, N.F., Okhlupin, Y.S., Ishchenko, A.V., Bobin, A.S., Mezentseva, N.V., Alikina, G.M., Lukashevich, A.I., Krieger, T.A., Larina, T.V., Bulgakov, N.N., Tapilin, V.M., Belyaev, V.D., Sadovskaya, E.M., Boronin, A.I., Sobyanin, V.A., Bobrenok, O.F., Smirnova, A.L., Smorygo, O.L., and Kilner, J.A., Perovskites and their nanocomposites with fluorite-like oxides as materials for solid oxide fuel cells cathodes and oxygen-conducting membranes: Mobility and reactivity of the surface/bulk oxygen as a key factor of their performance, in Perovskites: Structure, Properties and Uses, Borovski, M., Ed., New York: Nova Science Publishers, 2010, p. 67.
  6. Sadykov, V.A., Muzykantov, V.S., Yeremeev, N.F., Pelipenko, V.V., Sadovskaya, E.M., Bobin, A.S., Fedorova, Y.E., Amanbaeva, D.G., and Smirnova, A.L., Solid oxide fuel cell cathodes: Importance of chemical composition and morphology, Catal. Sustain. Energy, 2015, vol. 2, p. 57.https://doi.org/10.1515/cse-2015-0004
  7. Sadykov, V.A., Mezentseva, N.V., Bobrova, L.N., Smorygo, O.L., Eremeev, N.F., Fedorova, Y.E., Bespalko, Y.N., Skriabin, P.I., Krasnov, A.V., Lukashevich, A.I., Krieger, T.A., Sadovskaya, E.M., Belyaev, V.D., Shmakov, A.N., Vinokurov, Z.S., Bolotov, V.A., T-anashev, Y.Y., Korobeynikov, M.V., and Mikhailenko, M.A., Advanced materials for solid oxide fuel cells and membrane catalytic reactors, in Advanced Nanomaterials for Catalysis and Energy, Sadykov, V.A., Ed., Elsevier, 2019, pp. 435–514. https://doi.org/10.1016/B978-0-12-814807-5.00012-7
  8. Steele, B.C.H. State-of-the-art SOFC ceramic materials, Proc. 1 Eur. SOFC Forum, 1994, p. 375.
  9. Dicks, A., Advances in catalysts for internal reforming in high temperature fuel cells, J. Power Sources, 1998, vol. 71, p. 111. https://doi.org/10.1016/S0378-7753(97)02753-5
  10. Kim, I., Pillai, M.R., and Barnett, S.A., Liquid-hydrocarbon internal reforming in catalyst-assisted SOFCs, ECS Trans., 2007, vol. 7, p. 81. https://doi.org/10.1149/1.2729170
  11. De Souza, E.C.C. and Muccillo, R., Properties and applications of perovskite proton conductors, Mater. Res., 2010, vol. 13, p. 385. https://doi.org/10.1590/S1516-14392010000300018
  12. Adhikari, S. and Fernando, S., Hydrogen membrane separation techniques, Ind. Eng. Chem. Res., 2006, vol. 45, no. 3, p. 875. https://doi.org/10.1021/IE050644L
  13. Sadykov, V., Smirnova, A., Lukashevich, A., Vostrikov, Z., Rogov, V., Krieger, T., Ishchenko, A., Zaikovsky, V., Bobrova, L., Ross, J., Smorygo, O., Smirnova, A., Rietveld, B., and van Berkel, F., Nanocomposite catalysts for steam reforming of methane and biofuels: Design and performance, in Advances in Nanocomposites – Synthesis, Characterization and Industrial Applications, Reddy, B., Ed., Rijeka: InTech, 2011, p. 90.
  14. Adler, S.B., Factors governing oxygen reduction in solid oxide fuel cell cathodes, Chem. Rev., 2004, vol. 104, p. 4791. https://doi.org/10.1021/CR020724O
  15. Gao, Z., Mogni, L.V., Miller, E.C., Railsback, J.G., and Barnett, S.A., A perspective on low-temperature solid oxide fuel cells, Energy Environ. Sci., 2016, vol. 9, p. 1602. https://doi.org/10.1039/C5EE03858H
  16. Kolchugin, A.A., Pikalova, E.Y., Bogdanovich, N.M., Bronin, D.I., Pikalov, S.M., Plaksin, S.V., Ananyev, M.V., and Eremin, V.A., Structural, electrical and electrochemical properties of calcium-doped lanthanum nickelate, Solid State Ionics, 2016, vol. 288, p. 48. https://doi.org/10.1016/j.ssi.2016.01.035
  17. Flura, A., Nicollet, C., Vibhu, V., Zeimetz, B., Rougier, A., Bassat, J.-M., and Grenier, J.-C., Application of the Adler-Lane-Steele model to porous La2NiO4 + δ SOFC cathode: Influence of interfaces with gadolinia doped ceria, J. Electrochem. Soc., 2016, vol. 163, p. F523. https://doi.org/10.1149/2.0891606jes
  18. Adler, S.B., Lane, J.A., and Steele, B.C.H., Electrode kinetics of porous mixed-conducting oxygen electrodes, J. Electrochem. Soc., 1996, vol. 143, p. 3554. https://doi.org/10.1149/1.1837252
  19. Poetzsch, D., Merkle, R., Maier, J., Maier, J., Merkle, R., Maier, J., Maier, J., Kölsch, P., and Werth, S., Proton conductivity in mixed-conducting BSFZ perovskite from thermogravimetric relaxation, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 16 446. https://doi.org/10.1039/C4CP00459K
  20. Escolástico, S., Somacescu, S., and Serra, J.M., Ta-iloring mixed ionic–electronic conduction in H2 permeable membranes based on the system Nd5.5W1 – xMoxO11.25 – δ, J. Mater. Chem. A., 2015, vol. 3, p. 719.https://doi.org/10.1039/C4TA03699A
  21. Muzykantov, V.S., Popovskii, V.V., and Boreskov, G.K., Kinetics of isotope exchange in a molecular oxygen–solid oxide system, Kinetika i Kataliz (in Russian), 1964, vol. 5, no. 4, p. 624.
  22. Chater, R.J., Carter, S., Kilner, J.A., and Steele, B.C.H., Development of a novel SIMS technique for oxygen self-diffusion and surface exchange coefficient measurements in oxides of high diffusivity, Solid State Ionics, 1992, vol. 53–56, p. 859. https://doi.org/10.1016/0167-2738(92)90266-R
  23. Sadykov, V.A., Sadovskaya, E.M. and Uvarov, N.F., Methods of relaxations for estimation of oxygen diffusion coefficients in solid electrolytes and materials with mixed ionic-electronic conductivity, Russ. J. Electrochem., 2015, vol. 51, no. 5, p. 458. https://doi.org/10.1134/S1023193515050109
  24. Sadykov, V., Sadovskaya, E., Bobin, A., Kharlamova, T., Uvarov, N., Ulikhin, A., Argirusis, C., Sourkouni, G., and Stathopoulos, V., Temperature-programmed C18O2 SSITKA for powders of fast oxide-ion conductors: Estimation of oxygen self-diffusion coefficients, Solid State Ionics, 2015, vol. 271, p. 69. https://doi.org/10.1016/j.ssi.2014.11.004
  25. De Souza, R.A. and Kilner, J.A., Oxygen transport in La1 – xSrxMn1 – yCoyO3 ± δ perovskites: Part I. Oxygen tracer diffusion, Solid State Ionics, 1998, vol. 106, p. 175. https://doi.org/10.1016/S0167-2738(97)00499-2
  26. Muzykantov, V.S., Kemnitz, E., Sadykov, V.A., and Lunin, V.V., Interpretation of isotope exchange data “without time”: Nonisothermal exchange of dioxygen with oxides, Kinetics Catalysis, 2003, vol. 44, no. 3, p. 319.
  27. Starkov, I.A., Bychkov, S.F., Chizhik, S.A., and Nemudry, A.P., Oxygen release from grossly nonstoichiometric SrCo0.8Fe0.2O3 – δ perovskite in isostoichiometric mode, Chem. Mat., 2014, vol. 26, p. 2113. https://doi.org/10.1021/cm4040775
  28. Bychkov, S.F., Popov, M.P., and Nemudry, A.P., Study of the oxygen exchange kinetics in the nonstoichiometric oxide SrFeO3 – δ under isostoichiometric conditions using the oxygen partial pressure relaxation technique, Kinetics Catalysis, 2016, vol. 57, no. 5, p. 697. https://doi.org/10.1134/S0023158416050050
  29. Bychkov, S.F., Gainutdinov, I.I., Chizhik, S.A., and Nemudry, A.P., Novel oxygen partial pressure relaxation technique for study of oxygen exchange in nonstoichiometric oxides. The model of relaxation kinetics, Solid State Ionics, 2018, vol. 320, p. 297.
  30. Zimens, K.E., Zur Kinetik heterogener Austaiisclireaktionen, Akt. Kemi, Mineral. Geol., 1945, vol. 20 A, p. 1.
  31. Winter, E.R.S., The reactivity of oxide surfaces, Adv. Catal., 1958, vol. 10, p. 196.
  32. Roginskii, S.Z., Theorhetical basics of methods of chemical reactions study (in Russian), Moskow: Izd. AN SSSR, 1956.
  33. Klier, K., Nováková, J., and Jíru, P., Exchange reactions of oxygen between oxygen molecules and solid oxides, J. Catal., 1963, vol. 2, p. 479. https://doi.org/10.1016/0021-9517(63)90003-4
  34. Kilner, J.A., De Souza, R.A., and Fullarton, I.C., Surface exchange of oxygen in mixed conducting perovskite oxides, Solid State Ionics, 1996, vol. 86–88, p. 703. https://doi.org/10.1016/0167-2738(96)00153-1
  35. Adler, S.B., Chen, X.Y., and Wilson, J.R., Mechanisms and rate laws for oxygen exchange on mixed-conducting oxide surfaces, J. Catal., 2007, vol. 245, p. 91. https://doi.org/10.1016/J.JCAT.2006.09.019
  36. Bouwmeester, H.J.M., Song, C., Zhu, J., Yi, J., van Sint Annaland, M. and Boukamp, B.A., A novel pulse exchange technique for rapid determination of the oxygen surface exchange rate of oxide ion conductors, Phys. Chem. Chem. Phys., 2009, vol. 11, p. 9640. https://doi.org/10.1039/b912712g
  37. Boehm, E., Bassat, J., Dordor, P., Mauvy, F., Grenier, J., and Stevens, P., Oxygen diffusion and transport properties in non-stoichiometric Ln2 – xNiO4 + δ oxides, Solid State Ionics, 2005, vol. 176, p. 2717. https://doi.org/10.1016/j.ssi.2005.06.033
  38. Sadovskaya, E.M., Bobin, A.S., and Skazka, V.V., transient analysis of oxygen exchange over oxides, Chem. Eng. J., 2018, vol. 348, p. 1025. https://doi.org/10.1016/J.CEJ.2018.05.027
  39. Ananyev, M.V., Kurumchin, E.K., and Porotnikova, N.M., Effect of oxygen nonstoichiometry on kinetics of oxygen exchange and diffusion in lanthanum-strontium cobaltites, Russ. J. Electrochem., 2010, vol. 46, no. 7, p. 789. https://doi.org/10.1134/S1023193510070128
  40. Ananyev, M.V., Farlenkov, A.S., and Kurumchin, E.K., exchange between hydrogen from the gas phase and proton-conducting oxides: Theory and experiment, Int. J. Hydrogen Energy, 2018, vol.43, p. 13 373.
  41. Ananyev, M.V., Tropin, E.S., Eremin, V.A., Farlenkov, A.S., Smirnov, A.S., Kolchugin, A.A., Porotnikova, N.M., Khodimchuk, A.V., Berenov, A.V., and Kurumchin, E.K., Oxygen isotope exchange in La2NiO4 ± δ, Phys. Chem. Chem. Phys., 2016, vol. 18, p. 9102.
  42. Parfenov, M.V., Starokon, E.V., Semikolenov, S.V., and Panov, G.I., O2 exchange in the presence of O anion radicals on the FeZSM-5 surface, J. Catal., 2009, vol. 263, p. 173. https://doi.org/10.1016/J.JCAT.2009.02.009
  43. Boreskov, G.K., Catalysis: Problems on theory and practice: Selected works (in Russian), Novosibirsk: Nauka, 1987.
  44. Boreskov, G.K. and Muzykantov, V.S., Investigation of oxide-type oxidation catalysts by reactions of oxygen exchange, Ann. N.Y. Acad. Sci., 1973, vol. 213, p. 137. https://doi.org/10.1111/j.1749-6632.1973.tb51065.x
  45. Muzykantov, V.S., studies of dioxygen activation on oxide catalysts for oxidation: Problems, results and perspectives, React. Kinet. Catal. Lett., 1987, vol. 35, p. 437.https://doi.org/10.1007/BF02062178
  46. Mizusaki, J., Mima, Y., Yamauchi, S., Fueki, K., and Tagawa, H., Nonstoichiometry of the perovskite-type oxides La1 – xSrxCoO3 – δ, J. Solid State Chem., 1989, vol. 80, p. 102. https://doi.org/10.1016/0022-4596(89)90036-4
  47. Armstrong, E.N., Duncan, K.L., and Wachsman, E.D., Effect of A and B-site cations on surface exchange coefficient for ABO3 perovskite materials, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 2298. https://doi.org/10.1039/c2cp42919e
  48. Pikalova, E.Y., Kolchugin, A.A., Sadykov, V.A., Sadovskaya, E.M., Filonova, E.A., Eremeev, N.F., and Bogdanovich, N.M., Structure, transport properties and electrochemical behavior of the layered lanthanide nickelates doped with calcium, Int. J. Hydrogen Energy, 2018, vol. 43, p. 17 373. https://doi.org/10.1016/J.IJHYDENE.2018.07.115
  49. Sadykov, V.A., Pikalova, E.Y., Kolchugin, A.A., Filonova, E.A., Sadovskaya, E.M., Eremeev, N.F., Ishchenko, A.V., Fetisov, A.V., and Pikalov, S.M., Oxygen transport properties of Ca-doped Pr2NiO4, Solid State Ionics, 2018, vol. 317, p. 234. https://doi.org/10.1016/j.ssi.2018.01.035
  50. Sadykov, V., Mezentseva, N.V., Alikina, G.M., Lukashevich, A.I., Borchert, Y.V., Kuznetsova, T.G., Ivanov, V.P., Trukhan, S.N., Paukshtis, E.A., Muzykantov, V.S., Kuznetsov, V.L., Rogov, V.A., Ross, J.R.H., Kemnitz, E., and Mirodatos, C., Pt-supported nanocrystalline ceria-zirconia doped with La, Pr or Gd: Factors controlling syngas generation in partial oxidation/autothermal reforming of methane or oxygenates, Solid State Phenom., 2007, vol. 128, p. 239. 10.4028/www.scientific.net/SSP.128.239
  51. Sadykov, V.A., Kuznetsova, T.G., Frolova-Borchert, Y.V., Alikina, G.M., Lukashevich, A.I., Rogov, V.A., Muzykantov, V.S., Pinaeva, L.G., Sadovskaya, E.M., Ivanova, Y.A., Paukshtis, E.A., Mezentseva, N.V., Batuev, L.C., Parmon, V.N., Neophytides, S., Kemnitz, E., Scheurell, K., Mirodatos, C., and van Veen, A.C., Fuel-rich methane combustion: Role of the Pt dispersion and oxygen mobility in a fluorite-like complex oxide support, Catal. Today. 2006, vol. 117, p. 475. https://doi.org/10.1016/j.cattod.2006.06.017
  52. Porotnikova, N.M., Ananyev, M.V., Eremin, V.A., Molchanova, N.G., and Kurumchin, E.K., Effect of acceptor substitution in perovskites La1 – xAxMnO3 ± δ (A = Ca, Sr, Ba) on the kinetics of interaction of gas-phase oxygen, Russ. J. Electrochem., 2016, vol. 52, no. 8, p. 717.
  53. Porotnikova, N.M., Eremin, V.A., Farlenkov, A.S., Kurumchin, E.Kh., Sherstobitova, E.A., Kochubey, D.I., and Ananyev, M.V. Effect of AO segregation on catalytical activity of La0.7A0.3MnO3 ± δ (A = Ca, Sr, Ba) regarding oxygen reduction reaction, Catal. Lett., 2018, vol. 148, no. 9, p. 2839.
  54. Sadykov, V.A., Kuznetsova, T.G., Simakov, A.V., Rogov, V.A., Zaikovskii, V.I., Moroz, E.M., Kochubei, D.I., Novgorodov, B.N., Ivanov, V.P., Trukhan, S.N., Litvak, G.S., Bulgakov, N.N., Lunin, V.V., and Kemnitz, E., Effect of lanthanum manganite modification by calcium and/or fluorine on the bonding strength, mobility and reactivity of the lattice and surface oxygen, MRS Proc., 2002, vol. 751, p. Z3.27.1. https://doi.org/10.1557/PROC-751-Z3.27
  55. Sadykov, V.A., Bulgakov, N.N., Muzykantov, V.S., Kuznetsova, T.G., Alikina, G.M., Lukashevich, A.I., Potapova, Y.V., Rogov, V.A., Burgina, E.B., Zaikovskii, V.I., Moroz, E.M., Litvak, G.S., Yakovleva, I.S., Isupova, L.A., Zyryanov, V.V., Kemnitz, E., and Neophytides, S., Mobility and reactivity of the surface and lattice oxygen of some complex oxides with perovskite structure, in Mixed Ionic Electronic Conducting Perovskites for Advanced Energy Systems,: Orlovskaya, N., Browning, N., Eds., Dordrecht: Springer Netherlands, 2004, p. 53. https://doi.org/10.1007/978-1-4020-2349-1_5
  56. Isupova, L.A., Tsybulya, S.V., Kryukova, G.N., Alikina, G.M., Boldyreva, N.N., Yakovleva, I.S., Ivanov, V.P., and Sadykov, V.A., Real structure and catalytic activity of La1 – xCaxMnO3 + δ perovskites, Solid State Ionics, 2001, vol. 141‑142, p. 417. https://doi.org/10.1016/S0167-2738(01)00737-8
  57. Goldberg, E., Nemudry, A., Boldyrev, V., and Schöllhorn, R., Model for anomalous transport of oxygen in nonstoichiometric perovskites. 1. General formulation of the problem, Solid State Ionics, 1998, vol. 110, p. 223. https://doi.org/10.1016/S0167-2738(98)00149-0
  58. Goldberg, E., Nemudry, A., Boldyrev, V., and Schöllhorn, R., Model for anomalous transport of oxygen in nonstoichiometric perovskites. 2. Analytical and numerical solutions, Solid State Ionics, 1999, vol. 122, p. 17.https://doi.org/10.1016/S0167-2738(98)00553-0
  59. Nemudry, A., Rogachev, A., Gainutdinov, I., and Schöllhorn, R., Reactivity of the perovskite system Ca1 – xSrxFeO2.5 + y in the topotactic electrochemical oxidation at ambient temperature, J. Solid State Electrochem., 2001, vol. 5, p. 450. https://doi.org/10.1007/s100080000188
  60. Nemudry, A., Goldberg, E.L., Aguirre, M., and Alario-Franco, M.Á., Electrochemical topotactic oxidation of nonstoichiometric perovskites at ambient temperature, Solid State Sci., 2002, vol. 4, p. 677.https://doi.org/10.1016/S1293-2558(02)01313-4
  61. Nemudry, A. and Uvarov, N., Nanostructuring in composites and grossly nonstoichiometric or heavily doped oxides, Solid State Ionics, 2006, vol. 177, p. 2491. https://doi.org/10.1016/j.ssi.2006.05.002
  62. Zhogin, I.L., Nemudry, A.P., Glyanenko, P.V., Kamenetsky, Yu.M., Bouwmeester, H.J.M., and Ismagilov, Z.R., Oxygen diffusion in nanostructured perovskites, Cat. Today, 2006, vol. 118, p. 151. https://doi.org/10.1016/j.cattod.2006.02.088
  63. Sadykov, V., Alikina, G., Lukashevich, A., Muzykantov, V., Usoltsev, V., Boronin, A., Koscheev, S., Krieger, T., Ishchenko, A., Smirnova, A., Bobrenok, O., and Uvarov, N., Design and characterization of LSM/ScCeSZ nanocomposite as mixed ionic–electronic conducting material for functionally graded cathodes of solid oxide fuel cells, Solid State Ionics, 2011, vol. 192, p. 540. https://doi.org/10.1016/j.ssi.2010.08.015
  64. Sadykov, V., Mezentseva, N., Usoltsev, V., Sadovskaya, E., Ishchenko, A., Pavlova, S., Bespalko, Y., Kharlamova, T., Zevak, E., Salanov, A., Krieger, T., Belyaev, V., Bobrenok, O., Uvarov, N., Okhlupin, Y., Smorygo, O., Smirnova, A., Singh, P., Vlasov, A., Korobeynikov, M., Bryazgin, A., Kalinin, P., and Arzhannikov, A., Solid oxide fuel cell composite cathodes based on perovskite and fluorite structures, J. Power Sources, 2011, vol. 196, p. 7104. https://doi.org/10.1016/j.jpowsour.2010.07.096
  65. Sadykov, V., Kharlamova, T., Batuev, L., Mezentseva, N., Alikina, G., Muzykantov, V., Krieger, T., Pavlova, S., Zaikovskii, V., Ishchenko, A., Zarubina, V., Rogov, V., Bobrenok, O., Uvarov, N., Kilner, J., Druce, J., and Smirnova, A. Design and characterization of nanocomposites based on complex perovskites and doped ceria as advanced materials for solid oxide fuel cell cathodes and membranes, MRS Proc., 2008, vol. 1098, p. 1098-HH07-06. https://doi.org/10.1557/PROC-1098-HH07-06
  66. Sadykov, V.A., Eremeev, N.F., Sadovskaya, E.M., Bobin, A.S., Fedorova, Y.E., Muzykantov, V.S., Mezentseva, N.V., Alikina, G.M., Kriger, T.A., Belyaev, V.D., Rogov, V.A., Ulikhin, A.S., Okhlupin, Y.S., Uvarov, N.F., Bobrenok, O.F., McDonald, N., Watton, J., Dhir, A., Steinberger-Wilckens, R., Mertens, J., and Vinke, I.C., Cathodic materials for intermediate-temperature solid oxide fuel cells based on praseodymium nickelates-cobaltites, Russ. J. Electrochem., 2014, vol. 50, no. 7, p. 669. https://doi.org/10.1134/S1023193514070131
  67. Sadykov, V., Eremeev, N., Alikina, G., Sadovskaya, E., Muzykantov, V., Pelipenko, V., Bobin, A., Krieger, T., Belyaev, V., Ivanov, V., Ishchenko, A., Rogov, V., Ulihin, A., Uvarov, N., Okhlupin, Y., Mertens, J., and Vinke, I., Oxygen mobility and surface reactivity of P-rNi1 – xCoxO3 + δ–Ce0.9Y0.1O2 – δ cathode nanocomposites, Solid State Ionics, 2014, vol. 262, p. 707. https://doi.org/10.1016/j.ssi.2014.01.020
  68. Sadykov, V., Eremeev, N., Sadovskaya, E., Bobin, A., Ishchenko, A., Pelipenko, V., Muzykantov, V., Krieger, T., and Amanbaeva, D., Oxygen mobility and surface reactivity of PrNi1 − xCoxO3 − δ perovskites and their nanocomposites with Ce0.9Y0.1O2 − δ by temperature-programmed isotope exchange experiments, Solid State Ionics, 2015, vol. 273, p. 35. https://doi.org/10.1016/j.ssi.2014.11.021
  69. Sadykov, V.A., Eremeev, N.F., Bolotov, V.A., Tanashev, Y.Y., Fedorova, Y.E., Amanbayeva, D.G., Bobin, A.S., Sadovskaya, E.M., Muzykantov, V.S., Pelipenko, V.V., Lukashevich, A.I., Krieger, T.A., Ishchenko, A.V., and Smirnova, A.L., The effect of microwave sintering on stability and oxygen mobility of praseodymium nickelates-cobaltites and their nanocomposites, Solid State Ionics, 2016, vol. 288, p. 76.https://doi.org/10.1016/j.ssi.2016.02.003
  70. Sadykov, V.A., Eremeev, N.F., Vinokurov, Z.S., Shmakov, A.N., Kriventsov, V.V., Lukashevich, A.I., Krasnov, A.V., and Ishchenko, A.V., Structural studies of Pr nickelate-cobaltite – Y-doped ceria nanocomposite, J. Ceram. Sci. Technol., 2017, vol. 8, p. 129.https://doi.org/10.4416/JCST2016-0009
  71. Sadykov, V.A., Pavlova, S.N., Vinokurov, Z.S., Shmakov, A.N., Eremeev, N.F., Fedorova, Y.E., Yakimchuk, E.P., Kriventsov, V.V., Bolotov, V.A., Tanashev, Y.Y., Sadovskaya, E.M., Cherepanova, S.V., and Zolotarev, K.V., Application of SR methods for the study of nanocomposite materials for hydrogen energy, Phys. Procedia, 2016, vol. 84, p. 397. https://doi.org/10.1016/j.phpro.2016.11.068
  72. Amow, G., Davidson, I.J., and Skinner, S.J., A comparative study of the Ruddlesden-Popper series, Lan + 1NinO3n + 1 (n = 1, 2 and 3), for fuel-cell cathode applications, Solid State Ionics, 2006, vol. 177, p. 1205. https://doi.org/10.1016/J.SSI.2006.05.005
  73. Geffroy, P.-M., Reichmann, M., Chartier, T., Bassat, J.-M., and Grenier, J.-C., Evaluating oxygen diffusion, surface exchange and oxygen semi-permeation in Ln2NiO4 + δ membranes (Ln = La, Pr and Nd), J. Memb. Sci., 2014, vol. 451, p. 234–242. https://doi.org/10.1016/J.MEMSCI.2013.08.035
  74. Porotnikova, N.M., Khodimchuk, A.V., Ananyev, M.V., Eremin, V.A., Tropin, E.S., Farlenkov, A.S., Pikalova, E.Y., and Fetisov, A.V., Oxygen isotope exchange in praseodymium nickelate, J. Solid State Electrochem., 2018, vol. 22, no. 7, p. 2115.
  75. Tropin, E.S., Ananyev, M.V., Farlenkov, A.S., Khodimchuk, A.V., Berenov, A.V., Fetisov, A.V., Eremin, V.A., and Kolchugin, A.A., Surface defect chemistry and oxygen exchange kinetics in La2 – xCaxNiO4 + δ, J. Solid State Chem., 2018, vol. 262, p. 199.
  76. Sadykov, V.A., Sadovskaya, E.M., Pikalova, E.Y., Kolchugin, A.A., Filonova, E.A., Pikalov, S.M., Eremeev, N.F., Ishchenko, A.V., Lukashevich, A.I., and Bassat, J.M., Transport features in layered nickelates: correlation between structure, oxygen diffusion, electrical and electrochemical properties, Ionics, 2018, vol. 24, p. 1181. https://doi.org/10.1007/s11581-017-2279-3
  77. Sadykov, V.A., Pikalova, E.Y., Kolchugin, A.A., Fetisov, A.V., Sadovskaya, E.M., Filonova, E.A., Eremeev, N.F., Goncharov, V.B., Krasnov, A.V., Skriabin, P.I., Shmakov, A.N., Vinokurov, Z.S., Ishchenko, A.V., and Pikalov, S.M., Transport properties of Ca-doped Ln2NiO4 for intermediate temperature solid oxide fuel cells cathodes and catalytic membranes for hydrogen production, Int. J. Hydrogen Energy, 2019 (In press). https://doi.org/10.1016/j.ijhydene.2018.03.039
  78. Pikalova, E., Kolchugin, A., Bogdanovich, N., Medvedev, D., Lyagaeva, J., Vedmid’, L., Ananyev, M., Plaksin, S., and Farlenkov, A., Suitability of Pr2 ‒ xCaxNiO4 + δ as cathode materials for electrochemical devices based on oxygen ion and proton conducting solid state electrolytes, Int. J. Hydrogen Energy, 2019 (In press). https://doi.org/10.1016/J.IJHYDENE.2018.06.023
  79. Li, X. and Benedek, N.A., Enhancement of ionic transport in complex oxides through soft lattice modes and epitaxial strain, Chem. Mater., 2015, vol. 27, p. 2647. https://doi.org/10.1021/acs.chemmater.5b00445
  80. Sadykov, V.A., Eremeev, N.F., Usol’tsev, V.V., Bobin, A.S., Alikina, G.M., Pelipenko, V.V., Sadovskaya, E.M., Muzykantov, V.S., Bulgakov, N.N., and Uvarov, N.F., Mechanism of oxygen transport in layered lanthanide nickelates Ln2 – xNiO4 + δ (Ln = La, Pr) and their nanocomposites with Ce0.9Gd0.1O2 – δ and Y2(Ti0.8Zr0.2)1.6Mn0.4O7 − δ solid electrolytes, Russ. J. Electrochem., 2013, vol. 49, no. 7, p. 645.https://doi.org/10.1134/S1023193513070136
  81. Pikalova, E.Yu., Medvedev, D.A., and Khasanov, A.F., Structure, stability and thermo-mechanical properties of Ca-substituted Pr2NiO4 + δ, Phys. Solid State, 2017, vol. 59, p. 679. https://doi.org/10.1134/S1063783417040187
  82. Pikalova, E.Y., Sadykov, V.A., Filonova, E.A., Eremeev, N.F., Sadovskaya, E.M., Bogdanovich, N.M., Kolchugin, A.A., Lyagaeva, J.G., Goncharov, V.B., Vedmid’, L.B., and Ishchenko, A.V., Transport properties and electrode performance of Ca-substituted Nd2NiO4, Proceeding of SEEP2018, Paisley, UK, 2018, vol. 3, p. 379.
  83. Pikalova, E.Y., Sadykov, V.A., Filonova, E.A., Eremeev, N.F., Sadovskaya, E.M., Bogdanovich, N.M., Kolchugin, A.A., Lyagaeva, J.G., Vedmid’, L.B., Ishchenko, A.V., and Goncharov, V.B., Structure, oxygen transport properties and electrode performance of Ca substituted Nd2NiO4, Solid State Ionics, 2019, vol. 335, p. 53. https://doi.org/10.1016/j.ssi.2019.02.012
  84. Atkinson, A., Barnett, S., Gorte, R.J., Irvine, J.T.S., McEvoy, A.J., Mogensen, M., Singhal, S.C., and Vohs, J., Advanced anodes for high-temperature fuel cells, Nat. Mater., 2004, vol. 3, p. 17.https://doi.org/10.1038/nmat1040
  85. Sadykov, V., Bobrova, L., Pavlova, S., Simagina, V., Makarshin, L., Parmon, V., Ross, J.R., van Veen, A.C., and Mirodatos, C., Syngas generation from hydrocarbons and oxygenates with structured catalysts, in Syngas: Production Methods, Post Treatment and Economics, Kurucz, A. and Bencik, I., Eds, New York: Nova Science Publishers, 2009, p. 530.
  86. Sadykov, V., Mezentseva, N., Alikina, G., Bunina, R., Rogov, V., Krieger, T., Belochapkine, S., and Ross, J., Composite catalytic materials for steam reforming of methane and oxygenates: Combinatorial synthesis, characterization and performance, Catal. Today, 2009, vol. 145, p. 127. https://doi.org/10.1016/j.cattod.2008.04.034
  87. Yaseneva, P., Pavlova, S., Sadykov, V., Alikina, G., Lukashevich, A., Rogov, V., Belochapkine, S., and Ross, J., Combinatorial approach to the preparation and characterization of catalysts for biomass steam reforming into syngas, Catal. Today, 2008, vol. 137, p. 23. https://doi.org/10.1016/j.cattod.2008.03.016
  88. Souza, M.M.V. and Schmal, M., Combination of carbon dioxide reforming and partial oxidation of methane over supported platinum catalysts, Appl. Catal. A Gen., 2003, vol. 255, p. 83. https://doi.org/10.1016/S0926-860X(03)00646-X
  89. Sadykov, V., Mezentseva, N., Pelipenko, V., Smorygo, O., and Rietveld, B., Anode materials for IT SOFC based on NiO/YSZ doped with complex oxides and promoted by Pt, Ru or Pd: Properties and catalytic activity in the steam reforming of CH4, Fuel Cells A Sustain. World, Proc. 8th Eur. SOFC Forum, June 30–July 4, 2008, Lucerne, Switzerland, 2008, p. 1.
  90. Sadykov, V., Mezentseva, N., Alikina, G., Lukashevich, A., Muzykantov, V., Bunina, R., Boronin, A., Pazhetnov, E., Paukshtis, E., Kriventsov, V., Smirnova, A., Vasylyev, O., Irvine, J., Bobrenok, O., Voronin, V., and Berger, I., Doped Nanocrystalline Pt-promoted ceria-zirconia as anode catalysts for IT SOFC: Synthesis and properties, MRS Proc., 2007, vol. 1023, p. 1023–JJ02-07. https://doi.org/10.1557/PROC-1023-JJ02-07
  91. Sadykov, V.A., Kriventsov, V.V., Moroz, E.M., Borchert, Y.V., Zyuzin, D.A., Kol’ko, V.P., Kuznetsova, T.G., Ivanov, V.P., Trukhan, S.N., Boronin, A.I., Pazhetnov, E.M., Mezentseva, N.V., Burgina, E.B., and Ross, J.R.H., Ceria-zirconia nanoparticles doped with La or Gd: Effect of the doping cation on the real structure, Solid State Phenom., 2007, vol. 128, p. 81. 10.4028/www.scientific.net/SSP.128.81
  92. Sadykov, V., Borchert, Y., Alikina, G., Lukashevich, A., Bunina, R., Zabolotnaya, G., Mezentseva, N., Moroz, E., Zaikovskii, V., Zyuzin, D., Uvarov, N., Zyryanov, V., and Orlovskaya, N., One-pot synthesis of mixed ionic-electronic conducting nanocomposites comprised of fluorite-like and perovskite-like phas es as catalytic materials for SOFC, Mater. Res. Soc. Symp. Proc., 2006, vol. 900E, p. O10.08.1‑6.
  93. Sadykov, V.A., Mezentseva, N., Alikina, G., Lukashevich, A., Muzykantov, V., Kuznetsova, T., Batuev, L., Fedotov, M., Moroz, E., Zyuzin, D., Kolko, V., Kriventsov, V., Ivanov, V., Boronin, A., Pazhetnov, E., Zaikovskii, V., Ishchenko, A., Rogov, V., Ross, J., and Kemnitz, E., Nanocrystalline doped ceria-zirconia fluorite-like solid solutions promoted by Pt: Structure, surface properties and catalytic performance in syngas generation, MRS Online Proc. Libr. Arch., 2006, vol. 988, p. 0988-QQ06-04.1. https://doi.org/10.1557/PROC-988-0988-QQ06-04
  94. Lei, Z. and Zhu, Q., Low temperature processing of dense nanocrystalline scandia-doped zirconia (ScSZ) ceramics, Solid State Ionics, 2005, vol. 176, p. 2791.https://doi.org/10.1016/J.SSI.2005.09.005
  95. Smirnova, A., Sadykov, V., Muzykantov, V., Mezentseva, N., Ivanov, V., Zaikovskii, V., Ishchenko, A., Sammes, N., Vasylyev, O., Kilner, J., Irvine, J., Vereschak, V., Kosacki, I., Uvarov, N., and Zyryanov, V., Scandia–stabilized zirconia: Effect of dopants on surface/grain boundary segregation and transport properties, Mater. Res. Soc. Symp. Proc., 2007, vol. 972, p. AA10-05.https://doi.org/10.1557/PROC-0972-AA10-05
  96. Sammes, N. and Du, Y., Intermediate-temperature SOFC electrolytes, in Fuel Cell Technologies: State and Perspectives, Sammes, N., Smirnova, A. and Vasylyev, O., Eds, Berlin/Heidelberg: Springer-Verlag, 2005, p. 19–34. https://doi.org/10.1007/1-4020-3498-9_3
  97. Inaba, H. and Tagawa, H., Ceria-based solid electrolytes, Solid State Ionics, 1996, vol. 83, p. 1. https://doi.org/10.1016/0167-2738(95)00229-4
  98. Sadykov, V.A., Frolova, Y.V., Alikina, G.M., Lukashevich, A.I., Muzykantov, V.S., Rogov, V.A., Moroz, E.M., Zyuzin, D.A., Ivanov, V.P., Borchert, H., Paukshtis, E.A., Bukhtiyarov, V.I., Kaichev, V.V., Neophytides, S., Kemnitz, E., and Scheurell, K., Mobility and reactivity of lattice oxygen in Gd-doped ceria promoted by Pt, React. Kinet. Catal. Lett., 2005, vol. 85, p. 367. https://doi.org/10.1007/s11144-005-0287-1
  99. Ito, Y., Lei, Y., Browning, N.D., and Mazanec, T.J., Analysis of the atomic-scale defect chemistry at interfaces in fluorite structured oxides by electron energy loss spectroscopy, MRS Proc., 2001, vol. 70, p. V11.10. https://doi.org/10.1557/PROC-703-V11.10
  100. Sadykov, V.A., Frolova, Y.V., Kriventsov, V.V., Kochubei, D.I., Moroz, E.M., Zyuzin, D.A., Potapova, Y.V., Muzykantov, V.S., Zaikovskii, V.I., Burgina, E.B., Borchert, H., Trukhan, S., Ivanov, V.P., Neophytides, S., Kemnitz, E., and Scheurell, K., Specificity of the local structure of nanocrystalline doped ceria solid electrolytes, MRS Proc., 2004, vol. 835, p. K3.6. https://doi.org/10.1557/PROC-835-K3.6
  101. Wachsman, E.D., Jayaweera, P., Jiang, N., Lowe, D.M., and Pound, B.G., Stable high conductivity ceria/bismuth oxide bilayered electrolytes, J. Electrochem. Soc., 1997, vol. 144, p. 233. https://doi.org/10.1149/1.1837390
  102. Sadykov, V.A., Kuznetsova, T.G., Veniaminov, S.A., Kochubey, D.I., Novgorodov, B.N., Burgina, E.B., Moroz, E.M., Paukshtis, E.A., Ivanov, V.P., Trukhan, S.N., Beloshapkin, S.A., Potapova, Y.V., Lunin, V.V., Kemnitz, E., and Aboukais, A., Cation/anion modified ceria-zirconia solid solutions promoted by pt as catalysts of methane oxidation into syngas by water in reversible redox cycles, React. Kinet. Catal. Lett., 2002, vol. 76, p. 83–92. https://doi.org/10.1023/A:1015617512304
  103. Kendrick, E., Islam, M.S., and Slater, P.R., Developing apatites for solid oxide fuel cells: insight into structural, transport and doping properties, J. Solid State Chem., 2007, vol. 17, p. 3104. .https://doi.org/10.1039/B704426G
  104. Kharlamova, T., Pavlova, S., Sadykov, V.A., Krieger, T., Batuev, L., Muzykantov, V., Lapina, O., Khabibulin, D., Chaikina, M., Uvarov, N., Pavlukhin, Y., Petrov, S., and Argirusis, C., Doped apatite type lanthanum silicates: Structure and property characterization, MRS Proc., 2008, vol. 1126, p. 1126-S11-04. https://doi.org/10.1557/PROC-1126-S11-04
  105. Tolchard, J.R., Islam, M.S., and Slater, P.R., Defect chemistry and oxygen ion migration in the apatite-type materials La9.33Si6O26 and La8Sr2Si6O26, J. Mater. Chem., 2003, vol. 13, p. 1956.https://doi.org/10.1039/b302748c
  106. Sadykov, V., Kharlamova, T., Pavlova, S., Muzykantov, V., Ishchenko, A., Krieger, T., Lapina, O., Uvarov, N., Chaikina, M., Pavlyukhin, Y., Argirusis, C., Bebelis, S., Gasparyan, H., Stathopoulos, V., Jothinathan, E., and Van der Biest, O., Doped lanthanum silicates with the apatite structure as oxide-ion conducting electrolytes: synthesis, characterization and application for design of intermediate temperature solid oxide fuel cell, in Lanthanum: Compounds, Production and Applications, Moore, R.J., Ed., New York: Nova Science Publishers, Inc., 2010, p. 1–126.
  107. Lacorre, P., Goutenoire, F., Bohnke, O., Retoux, R., and Laligant, Y., Designing fast oxide-ion conductors based on La2Mo2O9, Nature, 2000, vol. 404, p. 856. https://doi.org/10.1038/35009069
  108. Georges, S., Goutenoire, F., Bohnke, O., Steil, M.C., Skinner, S.J., Wiemhofer, H.D., and Lacorre, P., The LAMOX family of fast oxide-ion conductors: Overview and recent results, J. New Mater. Electrochem. Syst., 2004, vol. 7, p. 51.
  109. Pavlova, S., Bespalko, Y., Krieger, T., Sadykov, V., and Uvarov, N., Genesis, structural, and transport properties of La2Mo2 – xWxO9 prepared via mechanochemical activation, Ionics, 2017, vol. 23, p. 877. https://doi.org/10.1007/s11581-016-1869-9
  110. Pavlova, S., Kharlamova, T., Bespalko, Y., Krieger, T., Sadykov, V., Chesalov, Y., Ulihin, A., Uvarov, N., and Smirnova, A., Low-temperature synthesis, structural and transport properties of doped LAMOX – electrolytes for IT SOFS, ECS Trans., 2013, vol. 57, p. 939. https://doi.org/10.1149/05701.0939ecst
  111. Pavlova, S., Bespalko, Y., Sadykov, V., Eremeev, N., Krieger, T., Sadovskaya, E., Ishchenko, A., Bobin, A., Ulihin, A., Uvarov, N., and Smirnova, A., Structural and transport properties of doped LAMOX – Electrolytes for IT SOFC, Solid State Ionics, 2015, vol. 288, p. 103. https://doi.org/10.1016/j.ssi.2016.01.026
  112. Lacorre, P., Selmi, A., Corbel, G., and Boulard, B., On the flexibility of the structural framework of cubic LAMOX compounds, in relationship with their anionic conduction properties, Inorg. Chem., 2005, vol. 45, p. 627. https://doi.org/10.1021/IC0513080
  113. Xing, W., Syvertsen, G.E., Grande, T., Li, Z., and Haugsrud, R., Hydrogen permeation, transport properties and microstructure of Ca-doped LaNbO4 and LaNb3O9 composites, J. Memb. Sci., 2012, vol. 415, p. 878. https://doi.org/10.1016/j.memsci.2012.06.008
  114. Haugsrud, R. and Norby, T., Proton conduction in rare-earth ortho-niobates and ortho-tantalates, Nat. Mater., 2006, vol. 5, p. 193–196. https://doi.org/10.1038/nmat1591
  115. Sadykov, V.A., Bespalko, Y.N., Krasnov, A.V., Skriabin, P.I., Lukashevich, A.I., Fedorova, Y.E., Sadovskaya, E.M., Eremeev, N.F., Krieger, T.A., Ishchenko, A.V., Belyaev, V.D., Uvarov, N.F., Ulihin, A.S., and Skovorodin, I.N., Novel proton-conducting nanocomposites for hydrogen separation membranes, Solid State Ionics, 2018, vol. 322, p. 69. https://doi.org/10.1016/j.ssi.2018.05.003
  116. Brandão, A.D., Gracio, J., Mather, C.C., Kharton, V.V., and Fagg, D.P., B-site substitutions in LaNb1 – xMxO4 – δ materials in the search for potential proton conductors (M = Ga, Ge, Si, B, Ti, Zr, P, Al), J. Solid State Chem., 2011, vol. 184, p. 863. https://doi.org/10.1016/j.jssc.2011.02.012
  117. Haugsrud, R. and Risberg, T., Protons in acceptor-doped La3NbO7 and La3TaO7, J. Electrochem. Soc., 2009, vol. 156, p. B425. https://doi.org/10.1149/1.3068397
  118. Wood, J.R., Master Thesis, University of Oslo, 2007.
  119. Syvertsen, G.E., Estournès, C., Fjeld, H., Haugsrud, R., Einarsrud, M.-A., and Grande, T., Spark plasma sintering and hot pressing of hetero-doped LaNbO4, J. Am. Ceram. Soc., 2012, vol. 95, p. 1563. https://doi.org/10.1111/j.1551-2916.2012.05101.x
  120. Shimura, T., Fujimoto, S., and Iwahara, H., Proton conduction in non-perovskite-type oxides at elevated temperatures, Solid State Ionics, 2001, vol. 143, p. 117. https://doi.org/10.1016/S0167-2738(01)00839-6
  121. Magrasó, A., Frontera, C., Marrero-López, D., and Núñez, P., New crystal structure and characterization of lanthanum tungstate “La6WO12” prepared by freeze-drying synthesis, Dalt. Trans., 2009, vol. 46, p. 10273. https://doi.org/10.1039/b916981b
  122. Seeger, J., Ivanova, M.E., Meulenberg, W.A., Sebold, D., Stöver, D., Scherb, T., Schumacher, G., Escolástico, S., Solís, C., and Serra, J.M., Synthesis and Characterization of Nonsubstituted and Substituted Proton-Conducting La6 – xWO12 – y , Inorg. Chem., 2013, vol. 52, p. 10375. https://doi.org/10.1021/ic401104m
  123. Escolástico, S., Schroeder, M., and Serra, J.M., Optimization of the mixed protonic–electronic conducting materials based on (Nd5/6Ln1/6)5.5WO11.25 − δ, J. Mater. Chem. A., 2014, vol. 2, p. 6616. https://doi.org/10.1039/c3ta14324d
  124. Savvin, S.N., Shlyakhtina, A.V., Kolbanev, I.V., Knotko, A.V., Belov, D.A., Shcherbakova, L.G., and Nuñez, P., Zr-doped samarium molybdates – potential mixed electron–proton conductors, Solid State Ionics, 2014, vol. 262, p. 713. https://doi.org/10.1016/J.SSI.2014.01.031
  125. Savvin, S.N., Shlyakhtina, A.V., Borunova, A.B., Shcherbakova, L.G., Ruiz-Morales, J.C., and Núñez, P., Crystal structure and proton conductivity of some Zr-doped rare-earth molybdates, Solid State Ionics, 2015, vol. 271, p. 91. https://doi.org/10.1016/J.SSI.2014.12.003
  126. Shlyakhtina, A.V., Savvin, S.N., Knotko, A.V., Shcherbakova, L.G., and Núñez, P., Electrical conductivity of Ln6 – xZrxMoO12 + δ (Ln = La, Nd, Sm; x = 0.2, 0.6) ceramics during thermal cycling, Inorg. Mater., 2016, vol. 52, p. 1055. https://doi.org/10.1134/S0020168516100149
  127. Shlyakhtina, A.V., Savvin, S.N., Lyskov, N.V., Belov, D.A., Shchegolikhin, A.N., Kolbanev, I.V., Karyagina, O.K., Chernyak, S.A., Shcherbakova, L.G., and Núñez, P., Sm6 – xMoO12 – δ (x = 0, 0.5) and Sm6WO12 – Mixed electron-proton conducting materials, Solid State Ionics, 2017, vol. 302, p. 143. https://doi.org/10.1016/j.ssi.2017.01.020
  128. Norby, T., A Kröger-Vink compatible notation for defects in inherently defective sublattices, J. Korean Ceram. Soc., 2010, vol. 47, p. 19. https://doi.org/10.4191/KCERS.2010.47.1.019
  129. Shlyakhtina, A.V., Savvin, S.N., Lyskov, N.V., Kolbanev, I.V., Karyagina, O.K., Chernyak, S.A., Shcherbakova, L.G., and Núñez, P., Polymorphism in the family of Ln6 – xMoO12 – δ (Ln = La, Gd–Lu; x = 0, 0.5) oxygen ion- and proton-conducting materials, J. Mater. Chem. A., 2017, vol. 5, p. 7618.https://doi.org/10.1039/C6TA09963G
  130. Shlyakhtina, A.V., Kolbanev, I.V., Degtyarev, E.N., Lyskov, N.V., Karyagina, O.K., Chernyak, S.A., and Shcherbakova, L.G., Kinetic aspects of the synthesis of Ln6 – xMoO12 – δ (Ln = Sm, Ho–Yb; x = 0, 0.5) rare-earth molybdates using mechanical activation of oxides, Solid State Ionics, 2018, vol. 320, p. 272. https://doi.org/10.1016/J.SSI.2018.02.004
  131. Savvin, S.N., Avdeev, M., Kolbanev, I.V., Kharitonova, E.P., Shcherbakova, L.G., Shlyakhtina, A.V., and Nuñez, P., Stability against reduction of fluorite-like rhombohedral La5.5MoO11.25 and Ho5.4Zr0.6MoO12.3 fluorite: Conductivity and neutron diffraction study, Solid State Ionics, 2018, vol. 319, p. 148.https://doi.org/10.1016/J.SSI.2018.02.001
  132. Foex, M., A family of refractory compounds-rare earths tungstates of type R6WO12, Bull. LA Soc. Chim. Fr., 1967, vol. 10, p. 3696.
  133. Bespalko, Y., Sadykov, V., Eremeev, N., Skryabin, P., Krieger, T., Sadovskaya, E., Bobrova, L., Uvarov, N., Lukashevich, A., Krasnov, A., and Fedorova, Y., Synthesis of tungstates/Ni0.5Cu0.5O nanocomposite materials for hydrogen separation cermet membranes, Compos. Struct., 2018, vol. 202, p. 1263. https://doi.org/10.1016/J.COMPSTRUCT.2018.06.004