Examples



mdbootstrap.com



 
Статья
2020

ZnS/Fe2O3/Ag Ternary Nanocomposite Photocatalyst for the Degradation of Dyes Under Visible Light


 Jhansi Rani Sunkara Jhansi Rani Sunkara,  Sathish Mohan Botsa Sathish Mohan Botsa
Российский журнал физической химии А
https://doi.org/10.1134/S0036024420020144
Abstract / Full Text

Recently the researchers have shown great interest on photocatalysis, especially in dyes degradation by nanocomposites under visible light. In this work, the photocatalytic degradation of dye pollutants such as Malachite green (MG) and Eosin blue (EB) by zinc sulfide based ternary nanocomposite (ZnS–Fe2O3–Ag) under visible light irradiation, was reported for the first time. As-synthesized nanocomposite was studied for its structural, morphological and optical properties by using different instrumental techniques such as XRD, FTIR, FESEM, EDS, TGA, and UV-DRS. The obtained results apparently stated that the formation of pure phase of ZnS/Fe/Ag confirmed by XRD and the spherical shape obtained from FESEM. The presence of Zn, S, Fe, and Ag in prepared composite according to EDS without impurities, confirmed that pure ternary nanocomposite was formed. The bandgap of prepared composite is found to be 2.33 eV, which is striven for visible light, resulting in the better photocatalytic activity towards the degradation of dye pollutants. The optimized conditions for degradation of both dyes are alkaline pH, and 30 mg catalyst load. The photocatalytic degradation of both MG and EB dyes by prepared nanocomposite was completed in one hour without adding of any oxidizing agent.

Author information
  • Deprtment of Physical, Nuclear Chemistry and Chemical Oceanography, Andhra University, 530003, Visakhapatnam, India Jhansi Rani Sunkara
  • National Centre for Polar and Ocean Research, 403804, Vasco da Gama, Goa, India Sathish Mohan Botsa
References
  1. B. S. Mohan, K. Ravi, G. S. Sree, R. B. Anjaneyulu, and K. Basavaiah, Phys. B (Amsterdam, Neth.) 553, 190 (2019).
  2. B. S. Mohan and K. Basavaiah, Nanotech. Environ. Eng. 4, 1 (2019).
  3. S. M. Botsa, D. Ramadevi, and K. Basavaiah, J. Nanosci. Technol. 4, 467 (2018).
  4. P. K. Malik and S. K. Saha Sep. Purif. Technol. 31, 241 (2003).
  5. Reza Moradi, Mahdi Hamidvand, and Amin Ganjali, Russ. J. Phys. Chem. A 93, 1133 (2019).
  6. D. F. Oills and H. Al-Ekabi, Photocatalytic Purification and Treatment of Water and Air (Elsevier, Amsterdam, 1993).
  7. R. B. Anjaneyulu, B. S. Mohan, G. P. Naidu, and R. Muralikrishna, Phys. E (Amsterdam, Neth.) 108, 105 (2019).
  8. D. I. Kim, S. H. Choi, and G. O. Park, J. Mater. Sci.: Mater. Electron. 9, 31 (1998).
  9. S. Kumar, C. L. Chen, C. L. Dong, Y. K. Ho, J. F. Lee, T. S. Chan, R. Thangavel, T. K. Chen, B. H. Mok, S. M. Rao, and M. K. Wu, J. Alloys Compd. 554, 357 (2013).
  10. W. T. Chen and Y. J. Hsu, Langmuir 26, 5918 (2010).
  11. Haile Hassena, Mod. Chem. Appl. 4, 1000176 (2016).
  12. A. Molla, M. Sahu, and S. Hussain, J. Mater. Chem. A 3, 15616 (2015).
  13. C. S. Pathak, M. K. Mandal, and V. Agarwal, Superlatt. Microstruct. 58, 135 (2013).
  14. G. V. Rao, G. S. Sree, B. S. Mohan, and R. B. Anjaneyulu, Int. J. Green Herb. Chem. 7, 373 (2018).
  15. M. Zou, J. Li, W. Wen, L. Chen, L. Guan, H. Lai, and Z. Huang, J. Power Source 270, 468 (2014).
  16. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1974), Vol. 32, p. 992.
  17. Y. Xiong, J. Hazard. Mater. 341, 159 (2018).
  18. K. Ravi, B. Sathish Mohan, G. Satya Sree, I. Manga Raju, K. Basavaiah, and B. Venkateswara Rao, Int. J. Chem. Stud. 6 (6), 20 (2018).
  19. S. M. Botsa, D. Ramadevi, and K. Basavaiah, Curr. Nanosci. 15, 209 (2019).
  20. R. B. Anjaneyulu, B. S. Mohan, G. P. Naidu, and R. Muralikrishna, J. Asian Ceram. Soc. 6, 183 (2018).