Статья
2022

Activity and Stability of a Platinum Nanostructured Catalyst Deposited onto a Nitrogen-Doped Carbonaceous Support


E. A. Moguchikh E. A. Moguchikh , K. O. Paperzh K. O. Paperzh , A. A. Alekseenko A. A. Alekseenko , E. N. Gribov E. N. Gribov , V. E. Guterman V. E. Guterman
Российский электрохимический журнал
https://doi.org/10.1134/S1023193522060088
Abstract / Full Text

A comparative analysis of the microstructure and electrochemical behavior of a platinum PCN catalyst synthesized over a nitrogen-doped carbon support and a commercial Pt/C-electrocatalyst HiSPEC3000 is carried out. The PCN catalyst is characterized by a smaller size of platinum nanoparticles and exhibits not only a higher activity in oxygen reduction reaction but also a higher corrosion-morphological resistance in acidic media.

Author information
  • Southern Federal University, Rostov-on-Don, Russia

    E. A. Moguchikh, K. O. Paperzh, A. A. Alekseenko & V. E. Guterman

  • Novosibirsk State University, Novosibirsk, Russia

    E. N. Gribov

References
  1. Zhang, H., Hwang, S., Wang, M., Feng, Z., Karakalos, S., Luo, L., Qiao, Z., Xie, X., Wang, Ch., Su, D., Shao, Yu., and Wu, G., Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation, J. Am. Chem. Soc., 2017, vol. 40, no. 139, p. 14143. https://doi.org/10.1021/JACS.7B06514
  2. Zheng, X., Wu, J., Cao, X., Abbott, J., Jin, C., Wang, H., Strasser, P., Yang, R., Chen, X., and Wu, G., N-, P-, and S-doped Graphene-like Carbon Catalysts Derived from Onium Salts with Enhanced Oxygen Chemisorption for Zn-air Battery Cathodes, Appl. Catal. B: Environmental, 2018. https://doi.org/10.1016/J.APCATB.2018.09.054
  3. Moriau, L.J., Hrnjic, A., Pavlisic, A., Kamsek, A.R., Petek, U., Ruiz-Zepeda, F., Sala, M., Pavko, L., Selih, V.S., Bele, M., Jovanovic, P., Gatalo, M., and Hodnik, N., Resolving the nanoparticles structure-property relationships at the atomic level: a study of Pt-based electrocatalysts, iScience, 2021, vol. 24, no. 2, 102102. https://doi.org/10.1016/J.ISCI.2021.102102
  4. Maillard, F., Simonov, P.A., and Savinova, E.R., Carbon Materials as Supports for Fuel Cell Electrocatalysts, Carbon Mater. Catalysis, 2008, p. 429. https://doi.org/10.1002/9780470403709.CH12
  5. Bentele, D., Aylar, K., Olsen, K., Klemm, E., and Eberhardt, S.H., PEMFC Anode Durability: Innovative Characterization Methods and Further Insights on OER Based Reversal Tolerance, J. Electrochem. Soc., 2021, vol. 168, no. 2, p. 024515. https://doi.org/10.1149/1945-7111/ABE50B
  6. Stevens, D.A. and Dahn, J.R., Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells, Carbon, 2005, vol. 43, p. 179. https://doi.org/10.1016/J.CARBON.2004.09.004
  7. Reiser, C.A., Bregoli, L., Patterson, T.W., Yi, J.S., Yang, J.D., Perry, M.L., and Jarvi, T.D., A Reverse-Current Decay Mechanism for Fuel Cells, Electrochem. Solid-State Lett., 2005, vol. 8, p. A273. https://doi.org/10.1149/1.1896466
  8. Lee, G., Choi, H., and Tak, Y., In situ durability of various carbon supports against carbon corrosion during fuel starvation in a PEM fuel cell cathode, Nanotech., 2018, vol. 30, no. 8, p. 085402. https://doi.org/10.1088/1361-6528/aaf48c
  9. Du, Y., Shen, Y.B., Zhan, Y.L., Ning, F.D., Yan, L.M., and Zhou, X.C., Highly active iridium catalyst for hydrogen production from formic acid, Chinese Chem. Lett., 2017, vol. 28, p. 1746. https://doi.org/10.1016/J.CCLET.2017.05.018
  10. Castanheira, L., Silva, W.O., Lima, F.H.B., Crisci, A., Dubau, L., and Maillard, F., Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: Effect of the Carbon Structure, the Degradation Protocol, and the Gas Atmosphere, ACS Catal., 2015, vol. 5, p. 2184. https://doi.org/10.1021/CS501973
  11. Chen, J., Hu, J., and Waldecker, J.R., A Comprehensive Model for Carbon Corrosion during Fuel Cell Start-Up, J. Electrochem. Soc., 2015, vol. 162, no. 8, p. F878. https://doi.org/10.1149/2.0501508jes
  12. Jia, F., Guo, L., and Liu, H., Dynamic characteristics of internal current during startups/shutdowns in proton exchange membrane fuel cells, Int. J. Energy Res., 2019. https://doi.org/10.1002/ER.4537
  13. Tang, H., Qi, Z., Ramani, M., and Elter, J., PEM Fuel Cell Cathode Carbon Corrosion due to the Formation of Air/Fuel Boundary at the Anode, J. Power Sources, 2008, vol. 158, p. 1306. https://doi.org/10.1016/j.jpowsour.2005.10.059
  14. Meyer, Q., Pivac, I., Barbir, F., and Zhao, C., Detection of oxygen starvation during carbon corrosion in proton exchange membrane fuel cells using low-frequency electrochemical impedance spectroscopy, J. Power Sources, 2020, vol. 470, p. 228285. https://doi.org/10.1016/J.JPOWSOUR.2020.228285
  15. Messing, M. and Kjeang, E., Empirical modeling of cathode electrode durability in polymer electrolyte fuel cells, J. Power Sources, 2020, vol. 451, p. 227750. https://doi.org/10.1016/J.JPOWSOUR.2020.227750
  16. Alekseenko, A.A., Guterman, V.E., Belenov, S.V., Menshikov, V.S., Tabachkova, N.Y., Safronenko, O.I., and Moguchikh, E.A., Pt/C-electrocatalysts based on the nanoparticles with the gradient structure, Int. J. Hydrog. Energy, 2018, vol. 43, p. 3676. https://doi.org/10.1016/J.IJHYDENE.2017.12.143
  17. Guterman, V.E., Belenov, S.V., Alekseenko, A.A., Lin, R., Tabachkova, N.Y., and Safronenko, O.I., Activity and Stability of Pt/C and Pt–Cu/C Electrocatalysts, Electrocatalysis, 2018, vol. 9, p. 550. https://doi.org/10.1007/s12678-017-0451-1
  18. Yano, H., Watanabe, M., Iiyama, A., and Uchida, H., Particle-size effect of Pt cathode catalysts on durability in fuel cells, Nano Energy, 2016, vol. 29, p. 323. https://doi.org/10.1016/J.NANOEN.2016.02.016
  19. Polymeros, G., Baldizzone, C., Geiger, S., Grote, J.P., Knossalla, J., Mezzavilla, S., Keeley, G.P., Cherevko, S., Zeradjanin, A.R., Schüth, F., and Mayrhofer, K.J.J., High temperature stability study of carbon supported high surface area catalysts—expanding the boundaries of exsitu diagnostics, Electrochim. Acta, 2016, vol. 211, p. 744. https://doi.org/10.1016/J.ELECTACTA.2016.06.105
  20. Wanga, S., Wanga, H., Huang, Ch., Ye, P., Luo, X., Ning, J., Zhong, Y., and Hu, Y., Trifunctional electrocatalyst of N-doped graphitic carbon nanosheets encapsulated with CoFe alloy nanocrystals: The key roles of bimetal components and high-content graphitic-N, Appl. Catal. B: Environmental, 2021, vol. 298, p. 120512. https://doi.org/10.1016/J.APCATB.2021.120512GET
  21. Cheng, J., Li, Yu., Huang, X., Wang, Q., Mei, A., and Kang, P., Shen Highly stable electrocatalysts supported on nitrogen-self-doped three-dimensional graphene like networks with hierarchical porous structures, J. Mater. Chem. A, 2015, vol. 3, p. 1492. https://doi.org/10.1039/C4TA05552G
  22. Wang, W., Jia, Q., Mukerjee, S., and Chen, S., Recent insights into the oxygen-reduction electrocatalysis of Fe/N/C materials, ACS Catal., 2019, vol. 9, p. 10126. https://doi.org/10.1021/ACSCATAL.9B02583
  23. Imran Jafri, R., Rajalakshmi, N., and Ramaprabhu, S., Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell, J. Mater. Chem., 2010, vol. 20, p. 7114. https://doi.org/10.1039/C0JM00467G
  24. Mardle, P., Ji, X., Wu, J., Guan, S., Dong, H., and Du, S., Thin film electrodes from Pt nanorods supported on aligned N-CNTs for proton exchange membrane fuel cells, Appl. Catal. B: Environmental, 2020, vol. 260, p. 118031. https://doi.org/10.1016/J.APCATB.2019.118031
  25. Hu, Y., Jensen, J.O., Zhang, W., Cleemann, L.N., Xing, W., Bjerrum, N.J., and Li, Q., Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts, Angew. Chem. Int. Ed., 2014, vol. 53, p. 3675. https://doi.org/10.1002/ANIE.201400358
  26. Wang, H., Ye, W., Yang, Y., Zhong, Y., and Hu, Y., Zn-ion hybrid supercapacitors: achievements, challenges and future perspectives, Nano Energy, 2021, vol. 85, p. 105942. https://doi.org/10.1016/J.NANOEN.2021.105942
  27. Golovin, V.A., Maltseva, N.V., Gribov, E.N., and Okunev, A.G., New nitrogen-containing carbon supports with improved corrosion resistance for proton exchange membrane fuel cells. International, Int. J. Hydrog. Energy, 2017, vol. 42, p. 11159. https://doi.org/10.1016/J.IJHYDENE.2017.02.117
  28. Langford, J.I. and Wilson, A.J.C., Scherrer after sixty years: A survey and some new results in the determination of crystallite size, J. Appl. Crystallogr., 1978, vol. 11, no. 102. https://doi.org/10.1107/S0021889878012844
  29. Van der Vliet, D., Strmcnik, D.S., Wang, C., Stamenkovic, V.R., Markovic, N.M., and Koper, M.T.M., On the importance of correcting for the uncompensated Ohmic resistance in model experiments of the Oxygen Reduction Reaction, J. Electroanal. Chem., 2010, vol. 647, p. 29. https://doi.org/10.1016/J.JELECHEM.2010.05.016
  30. Shinozaki, K., Zack, J.W., Pylypenko, S., Pivovar, B.S., and Kocha, S.S., Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique: II. Influence of ink formulation, catalyst layer uniformity and thickness, J. Electrochem. Soc., 2015, vol. 162, p. F1384. https://doi.org/10.1149/2.0551512JES
  31. Pavlets, A., Alekseenko, A., Menshchikov, V., Belenov, S., Volochaev, V., Pankov, I., Safronenko, O., and Guterman, V., Influence of electrochemical pretreatment conditions of PtCu/C alloy electrocatalyst on its activity, Nanomat., 2021, vol. 6, p. 1499. https://doi.org/10.3390/NANO11061499
  32. Leontyev, I.N., Kuriganova, A.B., Leontyev, N.G., Hennet, L., Rakhmatullin, A., Smirnova, N.V., and Dmitriev, V., Size dependence of the lattice parameters of carbon supported platinum nanoparticles: X-ray diffraction analysis and theoretical considerations, RSC Adv., vol. 4, no. 68, p. 35959. https://doi.org/10.1039/C4RA04809A
  33. Riese, A., Banham, D., Ye, S., and Sun X., Accelerated stress testing by rotating disk electrode for carbon corrosion in fuel cell catalyst supports, J. Electrochem. Soc., 2015, vol. 162, p. F783. https://doi.org/10.1149/2.0911507JES
  34. Testing Wang, C., Ricketts, M., Soleymani, A.P., Jankovic, Ja., Waldecker, J., and Chen, J., Effect of Carbon Support Characteristics on Fuel Cell Durability in Accelerated Stress J. Electrochem. Soc., 2021, vol. 168, p. 044507. https://doi.org/10.1149/2.0911507JES
  35. Forouzandeh, F., Li, X., Banham, D.W., Feng, F., Ye, S., and Birss, V., Understanding the Corrosion Resistance of Meso- and Micro-Porous Carbons for Application in PEM Fuel Cells, J. Electrochem. Soc., 2018, vol. 165, p. F3230. https://doi.org/10.1149/2.0261806JES