Examples



mdbootstrap.com



 
Статья
2020

Numerical Calculation of Electrophysical and Thermodynamic Characteristics of Glow Discharge Plasma in Atmospheric Pressure Oxygen Formed After Spark Breakdown


V. P. DemkinV. P. Demkin, S. V. MelnichukS. V. Melnichuk, A. V. PostnikovA. V. Postnikov
Российский физический журнал
https://doi.org/10.1007/s11182-020-02013-7
Abstract / Full Text

The paper presents the results of numerical calculations by finite elements method of the spatiotemporal dynamic of electrophysical and thermodynamic characteristics of atmospheric pressure oxygen plasma after the spark breakdown in the gas-discharge gap of 1 mm. Calculations relied on the use of two-dimensional axially symmetric model of plasma in drift-diffusion approximation, as well as Navier-Stokes and thermal conductivity equations. Discharge characteristics were calculated considering and without considering the plasma heating for various electrical circuit parameters. It was shown that at breakdown voltage of 3500 V and plasma heating, the discharge development leads to formation of the independent stationary discharge of constant current localized in a finite volume. Comparative analysis was done of the impact of electronegative properties of gas and plasma heating on the spatiotemporal dynamic of electrophysical and thermodynamic discharge characteristics.

Author information
  • National Research Tomsk State University, Tomsk, RussiaV. P. Demkin, S. V. Melnichuk & A. V. Postnikov
References
  1. M. Laroussi, X. Lu, and M. Keidar, J. Appl. Phys, 122, 020901 (2017).
  2. K. Lotfy, J. Mod. Phys., 8, Issue 11, 1901–1910 (2017).
  3. M. Laroussi, Plasma, 1, Issue 1, 47–60 (2018).
  4. D. B. Graves, Phys. Plasmas, 21, 080901 (2014).
  5. Y. D. Korolev, O. B. Frants, N. V. Landl, et al., IEEE Trans. Plasma Sci., 40, Issue 11, 2837–2842 (2012).
  6. Y. D. Korolev, Russ. J. General Chem., 85, Issue 5, 1311–1325 (2015).
  7. V. P. Demkin, S. V. Melnichuk, O. V. Demkin, et al., Phys. Plasmas, 23, 043509 (2016).
  8. V. P. Demkin, S. V. Melnichuk, and A. V. Postnikov, Phys. Plasmas, 25, 083502 (2018).
  9. D. X. Liu, J. F. Li, A. J. Yang, et al., High Voltage, 1, Issue 2, 81–85 (2016).
  10. D. Dobrynin, G. Fridman, G. Friedman, et al., New J. Phys., 11, 115020 (2009).
  11. T. Von Woedtke, H-R. Metelmann, and K. D. Weltmann, Contrib. Plasma Phys., 54, Issue 2, 104–117.
  12. E. A. Bogdanov, V. I. Kolobov, A. A. Kudryavtsev, et al., Tech. Phys., 47, Issue 8, 946 (2002).
  13. A. R. Gibson and T. Gans, Plasma Sources Sci. Technol., 26, Issue 11, 115007 (2017).
  14. K. McKay, D. X. Liu, M. Z. Rong, et al., Appl. Phys. Lett., 99, 091501 (2011).
  15. P. D. Neufeld, A. R. Janzen, and R. A. Aziz, J. Chem. Phys., 57, 1100–1102 (1972).
  16. R. S. Brokaw, Ind. Eng. Process Design Develop., 8, 240–253 (1969).
  17. S. Gordon and B. J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouquet Detonations, NASA-SP-273 (1971).
  18. L. I. Stiel and G. Thodos, AIChE J., 10, 26–30 (1964).
  19. D-X. Liu, M-Z. Rong, X-H. Wang, et al., Plasma Process. Polym., 7, 846–865 (2010).
  20. Y. Itikawa, A. Ichimura, K. Onda, et al., J. Phys. Chem. Ref. Data, 18, 23–42 (1989).
  21. I. A. Fleming and J. A. Rees, J. Phys. B., 2, Issue 2, 423–425 (1996).
  22. Y. Okuyama, T. Kimura, S. Suzuki, et al., J. Phys. D: Appl. Phys., 45, 195202 (2012).
  23. G. J. M. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol., 14, 722–733 (2005).