Examples



mdbootstrap.com



 
Статья
2020

Synthesis, Structure, and Properties of Co2+ and Ni2+ Complexes with the Product of Condensation of 2-(7-Bromo-2-oxo-5-phenyl-3H-1,4-benzodiazepin-1-yl)acetohydrazide and 1H-Indole-2,3-dione


I. I. SeifullinaI. I. Seifullina, L. S. SkorokhodL. S. Skorokhod, A. V. PulyaA. V. Pulya, V. G. VlasenkoV. G. Vlasenko, A. L. TrigubA. L. Trigub, I. M. RakipowI. M. Rakipow
Российский журнал общей химии
https://doi.org/10.1134/S1070363220070166
Abstract / Full Text

[Co(HydrHIz)] and [Ni(HydrHIz)]∙2H2O (М = Co, Ni) complexes have been obtained via the reaction of M(CH3COO)2 with 2-(7-bromo-2-oxo-5-phenyl-3H-1,4-benzodiazepin-1-yl)acetohydrazide (Hydr) and 1H-indole-2,3-dione (НIz). Structure and composition of the complexes have been confirmed by elemental analysis, thermogravimetry, IR spectroscopy, and mass spectrometry data. The electrical conductivity and magnetic susceptibility of the complexes have been determined. The local atomic structure of coordination centers has been established by X-ray absorption spectroscopy.

Author information
  • I.I. Mechnikov Odessa National University, 65082, Odessa, UkraineI. I. Seifullina, L. S. Skorokhod & A. V. Pulya
  • Research Institute of Physics, Southern Federal University, 344090, Rostov-on-Don, RussiaV. G. Vlasenko
  • National Research Center “Kurchatov Institute”, 123182, Moscow, RussiaA. L. Trigub
  • Odessa National Polytechnic University, 65044, Odessa, UkraineI. M. Rakipow
References
  1. Kogan, V.A., Zelentsov, V.V., Larin, G.M., and Lukov, V.V., Kompleksy perekhodnykh metallov s gidrazonami (Complexes of Transition Metals with Hydrazones), Tsivadze, A.Yu., Ed., Moscow: Nauka., 1990.
  2. Albert, A., Selective Toxicity—The Physicochemical Basis of Therapy, New York: Chapman & Hall, 1985.
  3. Garnovskii, A.D., Vasil’chenko, I.S., and Garnovskii, D.A., Sovremennye aspekty sinteza metallokompleksov. Osnovnye ligandy i metody (Modern Aspects of the Synthesis of Metal Complexes. Basic Ligands and Methods), Rostov-on-Don: LaPO, 2000.
  4. Karbouj, R., El-Dissouky, A., Jeragh, B., and Al-Saleh, E., J. Coord. Chem., 2010, vol. 63, no. 5, p. 868. https://doi.org/10.1080/00958971003645946
  5. Bai, Y., Wang, J.-Li, Dang, D.-B., and Zheng, Y.-N., Spectrochim. Acta (A), 2012, vol. 97, p. 105. https://doi.org/10.1016/j.saa.2012.05.076
  6. Singh, J.V. and Singh, N.P., Bioinorg. Chem. Appl., 2012, p. 1. https://doi.org/10.1155/2012/104549
  7. Singh, N.P. and Singh, J.V., E-J. Chem., 2012, vol. 9, no. 4, p. 1835. https://doi.org/10.1155/2012/521345
  8. Ershov, P.V., Mezentsev, Y.V., Yablokov, E.O., Kaluzhsky, L.A., Florinskaya, A.V., Buneeva, O.A., Medvedev, A.E., and Ivanov, A.S., Russ. J. Bioorg. Chem., 2018, vol. 44, no. 2, p. 193. https://doi.org/10.1134/S1068162018010053
  9. Swathy, S.S., Joseyphus, R.S., Nisha, V.P., Subhadrambika, N., and Mohanan, K., Arab. J. Chem., 2016, vol. 9, p. S1847. https://doi.org/10.1016/j.arabjc.2012.05.004
  10. Shebl, M., El-ghamry, M.A., Khalil, S.E., and Kishk, M.A., Spectrochim. Acta (A), 2014, vol. 126, p. 232. https://doi.org/10.1016/j.saa.2014.02.014
  11. Khan, A., Jasinski, J.P., Smoleaski, V.A., Paul, K., Singh, G., and Sharma, R., Inorg. Chim. Acta, 2016, vol. 449, p. 119. https://doi.org/10.1016/j.ica.2016.05.013
  12. Tehrani, K.E., Hashemi, M., Hassan, M., Kobarfard, F., and Mohebbi, Sh., Chin. Chem. Lett., 2016, vol. 27, no. 2, p. 221. https://doi.org/10.1016/j.cclet.2015.10.027
  13. Muralisankar, M., Sujith, S., Bhuvanesh, N.S.P., and Sreekanth, A., Polyhedron, 2016, vol. 118, p. 103. https://doi.org/10.1016/j.poly.2016.06.017
  14. Lian, Z.-M., Sun, J., and Zhu, H-L., J. Mol. Struct., 2016, vol. 1117, p. 8. https://doi.org/10.1016/j.molstruc.2016.03.036
  15. Teng, Y.-O., Zhao, H-Y., Wang, J., Liu, H., and Yu, P., Eur. J. Med. Chem., 2016, vol. 112, p. 145. https://doi.org/10.1016/j.ejmech.2015.12.050
  16. Sobhani, S., Asadi, S., Salimi, M., and Zarifi, F., J. Organomet. Chem., 2016, vol. 822, p. 154. https://doi.org/10.1016/j.jorganchem.2016.08.021
  17. Pulya, A.V., Seifullina, I.I., Skorokhod, L.S., Vlasenko, V.G., Trigub, A.L., and Rakipov, I.M., Russ. J. Gen. Chem., 2018, vol. 88, no. 2, p. 277. https://doi.org/10.1134/s1070363218020135
  18. Nakamoto, K., Infrared Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1963.
  19. Pulya, A.V., Seifullina, I.I., Skorokhod, L.S., Vlasenko, V.G., Trigub, A.L., Zubavichus, Y.V., and Levchenkov, S.I., Russ. J. Gen. Chem., 2017, vol. 87, no. 1, p.86. https://doi.org/10.1134/S1070363217010145
  20. Pulya, A.V., Seifullina, I.I., Skorokhod, L.S., Vlasenko, V.G., Trigub, A.L., and Levchenkov, S.I., Russ. J. Gen. Chem., 2018, vol. 88, no. 7, p. 1451. https://doi.org/10.1134/S1070363218070162
  21. Geary, W.I., Coord. Chem. Rev., 1971, vol. 7, p. 81. https://doi.org/10.1016/S0010-8545(00)80009-0
  22. Rakitin, Yu.V. and Kalinnikov, V.T., Sovremennaya magnetokhimiya (Modern Magnetochemistry), St. Petersburg: Nauka, 1994.
  23. Chernyshov, A.A., Veligzhanin, A.A., and Zubavichus, Ya.V., Nucl. Instr. Meth. Phys. Res. (A), 2009, vol. 603, p. 95. https://doi.org/10.1016/j.nima.2008.12.167
  24. Newville, M., J. Synchrotron Rad., 2001, vol. 8, p. 96. https://doi.org/10.1107/S0909049500016290
  25. Zabinski, S.I., Rehr, J.J., Ankudinov, A., and Alber, R.C., Phys. Rev., 1995, vol. 52, p. 2995. https://doi.org/10.1103/PhysRevB.52.2995
  26. Cheng, F.W., Microchem. J., 1959, vol. 24, no. 6, p. 989. https://doi.org/10.1016/0026-265x(59)90085-02